The Kola region of the eastern Fennoscandian shield is prospective for diamondiferous magmatism based on structural-tectonic conditions that include: confinement to a platform with a Precambrian basement, thick lithosphere (170-240 km), and low heat flow (< 40 mW/m 2 ).The Kola region is located within the Kola and Karelian subcratons, which were amalgamated already by the Late Archean.Also critical for diamond prospectivity, kimberlitic magmatism has been recognized in the Kola region, occurring as abundant dykes and explosive pipes of alkaline and alkalineultrabasic composition (Fig. 1).Numerous kimberlitic indicator minerals and diamonds have been recovered from the Quaternary sediments of the region.Based on these discoveries, kimberlitic field are predicted in the Makeevka, Pyalitsa, Pulonga, Snezhnitsa fields in south-east Kola and the Zarechensk field in south-west Kola (Zozulya et al., 2007).Also prospective is the southern part of region where the two Ermakovsky low-grade kimberlitic pipes are located (Kalinkin et al., 1993).
Many Proterozoic silicified sedimentary carbonates have been reported to contain remains of early micro-organisms.One of these localities in the Fennoscandian Shield is the village of Hyypiä at Kiihtelysvaara in eastern Finland, where a nodular chert contains microfossil-like objects, named Hyypiana jatulica n. gen., species R. Tynni.The original thin sections and grain mounts from Kiihtelysvaara were reinvestigated petrographically, and similar objects in a new grain mount from the original drill core specimen were analysed using microprobe.Petrographical and geochemical results prove that the microfossil-like objects in these samples from the nodular chert at Kiihtelysvaara are mineralogic pseudomicrofossils consisting of tourmaline microlites.Their chemical composition is similar to dravitic tourmalines from a cherty dolomite formation located in Kuusamo, eastern Finland.
We have studied plutonic rocks from the Korpo and Rauma areas of south-western Finland which can be categorized as intra-orogenic, i.e. they were intruded during a proposed extensional period between the two main Svecofennian orogenic cycles: the Fennian and Svecobaltic orogenies. The diorite from Rauma yielded an age of 1865 ± 9 Ma and the diorite from Korpo an age of 1852 ± 4 Ma. The adjacent garnet-bearing Korpo granite was 1849 ± 8 Ma in age. Zircons from the granite also included inherited Archaean and older Palaeoproterozic zircons, as well as metamorphic c. 1820 Ma rims. The diorites are high-K to shoshonitic, mantle-derived magmas, rich in Fe, P, F and light rare earth elements. The Korpo granites show typical features of crustal-derived melts and form hybrids with the diorites in contact zones. Both the mantle-derived and crustal-derived intra-orogenic magmatism are considered to have had a causal effect on the subsequent late Svecofennian (Svecobaltic) thermal evolution in southern Finland which culminated in granulite facies metamorphism and large-scale crustal melting.
Abstract In spite of significant economic value, the solubilities of the platinum group and precious metals in metallurgical copper smelting slags are not well known. Recent experimental information on iron-free and low-iron silicate melts indicates that the chemical solubility of platinum is very low, < 1 ppmw (part per million weight). In this study, the concentration of platinum in alumina spinel-saturated iron silicate slags in equilibrium with a solid iron-platinum alloy was measured as a function of oxygen partial pressure at 1300°C. The results were converted to unit activity of platinum by the thermodynamic properties of the iron-platinum alloy formed. This allowed the mechanism of dissolution of platinum in the slag and the forms of platinum species in alumina-rich iron silicate slags in copper scrap smelting and refining conditions to be obtained. Our findings explain some inconsistent results in the geochemical literature by proposing an anionic dissolution mechanism at low oxygen partial pressures in iron-containing silicate slags.
In situ trace element analysis of cumulus minerals may provide a clue to the parental magma from which the minerals crystallized. However, this is hampered by effects of the trapped liquid shift (TLS). In the Main Zone (MZ) of the Bushveld Complex, the Ti content in plagioclase grains shows a clear increase from core to rim, whereas most other elements [e.g. rare earth elements (REE), Zr, Hf, Pb] do not. This is different from the prominent intra-grain variation of all trace elements in silicate minerals in mafic dikes, which have a faster cooling rate. We suggest that crystal fractionation of trapped liquid occurred in the MZ of Bushveld and the TLS may have modified the original composition of the cumulus minerals for most trace elements except Ti during slow cooling. Quantitative model calculations suggest that the influence of the TLS depends on the bulk partition coefficient of the element. The effect on highly incompatible elements is clearly more prominent than that on moderately incompatible and compatible elements because of different concentration gradients between cores and rims of cumulate minerals. This is supported by the following observations in the MZ of Bushveld: (1) positive correlation between Cr, Ni and Mg# of clinopyroxene and orthopyroxene; (2) negative correlation between moderately incompatible elements (e.g. Mn and Sc in clinopyroxene and orthopyroxene; Sr, Ba and Eu in plagioclase); but (3) poor correlation between highly incompatible elements and Mg# of clinopyroxene and orthopyroxene or An# of plagioclase. Modeling suggests that the extent of the TLS for a trace element is also dependent on the initial fraction of the primary trapped liquid, with strong TLS occurring if the primary trapped liquid fraction is high. This is supported by the positive correlation between highly incompatible trace element abundances in cumulus minerals and whole-rock Zr contents. We have calculated the composition of the parental magma of the MZ of the Bushveld Complex. The compatible and moderately incompatible element contents of the calculated parental liquid are generally similar to those of the B3 marginal rocks, but different from those of the B1 and B2 marginal rocks. For the highly incompatible elements, we suggest that the use of the sample with the lowest whole-rock Zr content and the least degree of TLS is the best approach to obtain the parental magma composition. The heavy REE contents of the magma calculated from orthopyroxene are similar to those of B3 rocks and lower than those of B2 rocks. The calculated REE contents from clinopyroxene are generally significantly higher than for B2 or B3 rocks, and those from plagioclase are in the lower level of B2, but slightly higher than for B3. However, the calculated REE patterns for both clinopyroxene and plagioclase show strong negative Eu anomalies, which are at the lower level of the B2 field and within the B3 field, respectively. We suggest that Eu may be less affected by TLS than other REE owing to its higher bulk compatibility. Based on this and the fact that the calculated REE contents of the parental magma should be higher than the real magma composition owing to some degree of crystal fractionation and TLS, even for the sample with the lowest amount of trapped liquid, we propose that a B3 type liquid is the most likely parental magma to the MZ of the Bushveld Complex. In the lowermost part of the MZ, there is involvement of the Upper Critical Zone (UCZ) magma.
Exploring and discovering new ore deposits that supply the needed metals for our current societal transition to a green-energy and technologically advanced low-carbon future is becoming increasingly difficult. To fully convert the current system however, a significant increase of mining of minerals is required, particularly since current global mineral reserves are insufficient to cover the growing demand for a fossil fuel-free infrastructure. It is therefore even more important to develop and introduce new time-and cost-efficient exploration tools, which can be utilized in the discovery of new mineral deposits and applied in the early, or through advanced stages of mineral exploration. Given that Finland is one of the major EU countries that covers the supply chain for the EU battery industry, its metallogenic provinces are extensively tested and investigated by new exploration technologies. For this purpose, a comprehensive dataset of trace element contents in single grains of pyrite, pyrrhotite and chalcopyrite was compiled on the basis of results of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analyses. Samples were systematically collected from drill cores from orogenic Au-only and Au-base-metal deposits in the Paleoproterozoic Svecofennian orogenic belts in northern Finland. The objective of this dataset is to serve as a reference tool in heavy indicator minerals-based exploration. By performing correlation analysis with the symmetric pivot coordinates approach for compositional data, as well as principal component analysis, it is demonstrated how all analyzed sulfide species have the capacity to discriminate between Au-only and Au-base-metal deposit types, as well as occurrences of free Au versus refractory Au. Element pairs of symmetric coordinates most suitable for differentiating Au-only systems from Au-base-metal settings are Co/Au and Au/Se in pyrite; Ni/Bi and Se/As in pyrrhotite; and Ni/Ag, Ag/In, Se/Ag, Cr/Ag, Cr/In, Cr/Zn, Zn/Se and Sn/Se in chalcopyrite. Results from principal component analysis reveal that pyrites from Au-base-metal deposits are associated with the positive loadings of Se-As-Co onto PC1 and those from Au-only deposits with negative loadings of Bi-Sb-Te-Au and Ni onto PC1 and PC2, respectively. In the case of pyrrhotite, samples from Au-Co and Au-Cu deposits are clearly distinguished between the positive loadings of Hg-Se-Co onto PC1, and the negative loadings of Sb-Au-Bi-Ni onto PC1. Positive loadings of Ag-Se and Co along PC1 are indicative of chalcopyrite from Au-Co deposits, while negative loadings of Ni and Zn onto PC1 are pointing towards an origin from Au-Cu, as well as Au-only deposits. Additionally, when testing the indicator mineral method with recovered pyrites from till samples from the Peräpohja belt, a potential relationship with bedrock pyrites is successfully demonstrated. This study aims to present the versatility of sulfide trace elements in geochemical exploration, as it could complement the mineral exploration industry with a more efficient and less expensive practice for profitable deposit discovery.