SummaryThe In-Situ Laboratory Project (In-situ Lab) entails a configuration of wells at approximately 400 m depth for monitoring the controlled release of CO2 in a fault zone at the South West Hub CCS Flagship project in Western Australia. The project aims to evaluate the ability to monitor and detect unwanted leakage of CO2 from a storage complex. The In-Situ Lab consists of three instrumented wells up to 400 m deep: 1) Harvey-2 – primarily for CO2 injection, 2) a fiberglass geophysical monitoring well with behind-casing instrumentation, and 3) a shallow groundwater well for fluid sampling.A controlled- release test involving the injection of 38 tonnes of CO2 between 336-342 m depth was conducted successfully in February 2019. Monitoring during the CO2 controlled-release test included: a) continuous downhole pressure and temperature recording in the injection well, b) recording of pressure and temperature at the wellhead and at various points in the injection system, c) regular distributed temperature measurements, d) multiple vertical seismic profiling surveys using the behind-casing distributed acoustic sensor fiber-optic cable and geophones, e) electric resistivity imaging, f) groundwater sampling, g) comprehensive soil flux and atmospheric monitoring surveys, h) collection of gas samples from the surface injection facilities, i) recording of passive seismic data close to the injection well and in the wider area around the well lease, j) downhole video camera surveys, and k) pulsed neutron and induction logging.The In-Situ Lab has the potential to form an enduring research facility at the South West Hub to enable further research of the characterisation of CO2 migration in fault zones and the shallow groundwater environment.
Large sedimentary basins with multiple aquifer systems like the Great Artesian Basin and the Beetaloo Sub-Basin are associated with large time and spatial scales for regional groundwater flow and mixing effects from inter-aquifer exchange. This makes them difficult to study using traditional hydrogeological investigation techniques. In continental onshore Australia, such sedimentary aquifer systems can also be important freshwater resources. These resources have become increasingly stressed because of growing demand and use of groundwater by multiple industries (e.g. stock, irrigation, mining, oil and gas). The social licence to operate for extractive oil and gas industries increasingly requires robust and reliable scientific evidence on the degree to which the target formations are vertically and laterally hydraulically separated from the aquifers supplying fresh water for stock and agricultural use. The complexity of such groundwater interactions can only be interpreted by applying multiple lines of evidence including environmental isotopes, hydrochemistry, hydrogeological and geophysical observations. We present an overview of multi-tracer studies from coal seam gas areas (Queensland and New South Wales) or areas targeted for shale gas development (Northern Territory). The focus was to investigate recharge to surficial karst and deep confined aquifer systems before industrial extraction on time scales of decades up to one million years and aquifer inter-connectivity at the formation scale. A systematic and consistent methodology is applied for the different case study areas aimed at building robust conceptual hydrogeological models that inform groundwater management and groundwater modelling. The tracer studies provided (i) in all areas increased confidence around recharge estimates, (ii) evidence for a dual-porosity flow system in the Hutton Sandstone (Queensland) and (iii) new insights into the connectivity, or lack thereof, of flow systems.
Abstract Regional-scale estimates of groundwater recharge are inherently uncertain, but this uncertainty is rarely quantified. Quantifying this uncertainty provides an understanding of the limitations of the estimates, and being able to reduce the uncertainty makes the recharge estimates more useful for water resources management. This paper describes the development of a method to constrain the uncertainty in upscaled recharge estimates using a rejection sampling procedure for baseflow and remotely sensed evapotranspiration data to constrain the lower and upper end of the recharge distribution, respectively. The recharge estimates come from probabilistic chloride mass-balance estimates from 3,575 points upscaled using regression kriging with rainfall, soils and vegetation as covariates. The method is successfully demonstrated for the 570,000-km 2 Cambrian Limestone Aquifer in northern Australia. The method developed here is able to reduce the uncertainty in the upscaled chloride mass-balance estimates of recharge by nearly a third using data that are readily available. The difference between the 5 th and 95 th percentiles of unconstrained recharge across the aquifer was 31 mm/yr (range 5–36 mm/yr) which was reduced to 22 mm/yr for the constrained case (9–31 mm/yr). The spatial distribution of recharge was dominated by the spatial distribution of rainfall but was comparatively reduced in areas with denser vegetation or finer textured soils. Recharge was highest in the north-west in the Daly River catchment with a catchment average of 101 (61–192) mm/yr and lowest in the south-east Georgina River catchment with 6 (4–12) mm/yr.
In February 2019, at the CSIRO In-Situ Laboratory CCS project, a test was conducted where 38 t of gaseous CO2 were injected over 5 days into a fault zone at a depth of approximately 340 m. As a release test, this project enabled the testing and validation of surface and shallow well monitoring strategies at intermediate depths (i.e. depths much deeper than previous release projects and shallower than reservoirs used for CO2 storage). One of the aims of this project is to understand how CO2 would behave at intermediate depths if it did migrate from deeper depths (i.e. from a storage reservoir); the CO2 was not intended to migrate to the shallow subsurface or to surface/atmosphere. To verify that the injected CO2 remained in the subsurface, and to comply with environmental performance requirements on site, a comprehensive surface gas and groundwater monitoring program was conducted. The monitoring strategy was designed such that any leakage(s) to the surface of injected CO2 would be detected, mapped and, ultimately, quantified. The surface air monitoring program was comprised of three different but complementary approaches allowing data to be efficiently collected over different spatial and temporal scales. These approaches included continuous soil-gas chamber measurements at fixed locations, periodic soil-gas chamber measurements on gridded locations and near-surface atmospheric measurements on a mobile platform. The surface air monitoring approaches gave self-consistent results and reduced the risk of "false negative" test results. The only anomalous CO2 detected at the surface flowed from the observation well and could be directly attributed to a breach in the well casing at the injection depth providing a conduit for CO2/water to rise to the surface. Groundwater monitoring program revealed no impact on the groundwater resources attributable to the carbon injection project. Based on this work, we demonstrate that this multi-pronged monitoring strategy can be utilized to minimize the overall resources devoted to monitoring by increasing the number of monitoring approaches and diminishing the resources devoted to each technique. By maximizing the effectiveness of each element of the monitoring program, a cost-efficient and robust monitoring strategy capable of early leak detection and attribution of any leaking CO2 can be achieved.
A crucial decision in defining the scope of an environmental impact assessment is to delineate the initial assessment area. We developed a probabilistic methodology to determine this area, which starts by identifying a key environmental variable, maximum acceptable change and acceptable probability of exceeding that threshold. The exceedance probability is determined with a limits of acceptability rejection sampling of informed prior parameter distributions. A qualitative uncertainty analysis, a formal and systematic discussion of the main assumptions and model choices, is complemented with global sensitivity analysis of the model results to identify the major sources of uncertainty and provide guidance for further research and data collection. For the case study on coal development in the Gloucester Basin (NSW, Australia), the initial assessment extent is unlikely to extend more than 5 km from the edge of the planned coal mines. The major source of uncertainty is the planned mine water production rate.