The strong control that the emissions of carbon dioxide (CO2) have over Earth's climate identifies the need for accurate quantification of the emitted CO2 and its redistribution within the Earth system. The ocean annually absorbs more than a quarter of all CO2 emissions and this absorption is fundamentally altering the ocean chemistry. The ocean thus provides a fundamental component and powerful constraint within global carbon assessments used to guide policy action for reducing emissions. These carbon assessments rely heavily on satellite observations, but their inclusion is often invisible or opaque to policy. One reason is that satellite observations are rarely used exclusively, but often in conjunction with other types of observations, thereby complementing and expanding their usability yet losing their visibility. This exploitation of satellite observations led by the satellite and ocean carbon scientific communities is based on exciting developments in satellite science that have broadened the suite of environmental data that can now reliably be observed from space. However, the full potential of satellite observations to expand the scientific knowledge on critical processes such as the atmosphere-ocean exchange of CO2 and ocean acidification, including its impact on ocean health, remains largely unexplored. There is clear potential to begin using these observation-based approaches for directly guiding ocean management and conservation decisions, in particular in regions where in situ data collection is more difficult, and interest in them is growing within the environmental policy communities. We review these developments, identify new opportunities and scientific priorities, and identify that the formation of an international advisory group could accelerate policy relevant advancements within both the ocean carbon and satellite communities. Some barriers to understanding exist but these should not stop the exploitation and the full visibility of satellite observations to policy makers and users, so these observations can fulfil their full potential and recognition for supporting society.
Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2 (pCO2), total alkalinity, dissolved inorganic carbon and pH) have been collated, quality controlled and made publicly available. These carbonate system datasets have highly variable data density in both space and time, especially in the case of pCO2, which is routinely measured at high frequency using underway measuring systems. This variation in data density can create biases when the data are used, for example for algorithm assessment, favouring datasets or regions with high data density. A common way to overcome data density issues is to bin the data into cells of equal latitude and longitude extent. This leads to bins with spatial areas that are latitude and projection dependent (e. g. become smaller and more elongated as the poles are approached). Additionally, as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features, data clusters may be divided sub-optimally (e. g. a bin covering a region with a strong gradient). To overcome these problems and to provide a tool for matching surface in situ data with satellite, model and climatological data, which often have very different spatiotemporal scales both from the in situ data and from each other, a methodology has been created to group in situ data into ‘regions of interest’: spatiotemporal cylinders consisting of circles on the Earth’s surface extending over a period of time. These regions of interest are optimally adjusted to contain as many in situ measurements as possible. All surface in situ measurements of the same parameter contained in a region of interest are collated, including estimated uncertainties and regional summary statistics. The same grouping is applied to each of the non-in situ datasets in turn, producing a dataset of coincident matchups that are consistent in space and time. About 35 million in situ data points were matched with data from five satellite sources and five model and re-analysis datasets to produce a global matchup dataset of carbonate system data, consisting of ~286,000 regions of interest spanning 54 years from 1957 to 2020. Each region of interest is 100 km in diameter and 10 days in duration. An example application, the reparameterisation of a global total alkalinity algorithm, is shown. This matchup dataset can be updated as and when in situ and other datasets are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example to enable regional studies. The matchup dataset provides users with a large multiparameter carbonate system dataset containing data from different sources, in one consistent, collated and standardised format suitable for model-data intercomparisons and model evaluations. The OceanSODA-MDB data can be downloaded from https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022).
Abstract The long‐term absorption by the oceans of atmospheric carbon dioxide is leading to the slow decline of ocean pH, a process termed ocean acidification (OA). The Arctic is a challenging region to gather enough data to examine the changes in carbonate chemistry over sufficient scales. However, algorithms that calculate carbonate chemistry parameters from more frequently measured parameters, such as temperature and salinity, can be used to fill in data gaps. Here, these published algorithms were evaluated against in situ measurements using different data input types (data from satellites or in situ re‐analysis climatologies) across the Arctic Ocean. With the lowest uncertainties in the Atlantic influenced Seas (AiS), where re‐analysis inputs achieved total alkalinity estimates with Root Mean Squared Deviation (RMSD) of 21 μmol kg −1 and a bias of 2 μmol kg −1 ( n = 162) and dissolved inorganic carbon RMSD of 24 μmol kg −1 and bias of −14 μmol kg −1 ( n = 262). AiS results using satellite observation inputs show similar bias but larger RMSD, although due to the shorter time span of available satellite observations, more contemporary in situ data would provide further assessment and improvement. Synoptic‐scale observations of surface water carbonate conditions in the Arctic are now possible to monitor OA, but targeted in situ data collection is needed to enable the full exploitation of satellite observation‐based approaches.
Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2 (pCO2), total alkalinity, dissolved inorganic carbon and pH) have been collated, quality controlled and made publicly available. These carbonate system datasets have highly variable data density in both space and time, especially in the case of pCO2, which is routinely measured at high frequency using underway measuring systems. This variation in data density can create biases when the data are used, for example for algorithm assessment, favouring datasets or regions with high data density. A common way to overcome data density issues is to bin the data into cells of equal latitude and longitude extent. This leads to bins with spatial areas that are latitude and projection dependent (e. g. become smaller and more elongated as the poles are approached). Additionally, as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features, data clusters may be divided sub-optimally (e. g. a bin covering a region with a strong gradient). To overcome these problems and to provide a tool for matching surface in situ data with satellite, model and climatological data, which often have very different spatiotemporal scales both from the in situ data and from each other, a methodology has been created to group in situ data into ‘regions of interest’: spatiotemporal cylinders consisting of circles on the Earth’s surface extending over a period of time. These regions of interest are optimally adjusted to contain as many in situ measurements as possible. All surface in situ measurements of the same parameter contained in a region of interest are collated, including estimated uncertainties and regional summary statistics. The same grouping is applied to each of the non-in situ datasets in turn, producing a dataset of coincident matchups that are consistent in space and time. About 35 million in situ data points were matched with data from five satellite sources and five model and re-analysis datasets to produce a global matchup dataset of carbonate system data, consisting of ~286,000 regions of interest spanning 54 years from 1957 to 2020. Each region of interest is 100 km in diameter and 10 days in duration. An example application, the reparameterisation of a global total alkalinity algorithm, is shown. This matchup dataset can be updated as and when in situ and other datasets are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example to enable regional studies. The matchup dataset provides users with a large multiparameter carbonate system dataset containing data from different sources, in one consistent, collated and standardised format suitable for model-data intercomparisons and model evaluations. The OceanSODA-MDB data can be downloaded from https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022).
It is widely projected that under future climate scenarios the economic importance of Arctic Ocean fish stocks will increase. The Arctic Ocean is especially vulnerable to ocean acidification and already experiences low pH levels not projected to occur on a global scale until 2100. This paper outlines how ocean acidification must be considered with other potential stressors to accurately predict movement of fish stocks toward, and within, the Arctic and to inform future fish stock management strategies. First, we review the literature on ocean acidification impacts on fish, next we identify the main obstacles that currently preclude ocean acidification from Arctic fish stock projections. Finally, we provide a roadmap to describe how satellite observations can be used to address these gaps: improve knowledge, inform experimental studies, provide regional assessments of vulnerabilities, and implement appropriate management strategies. This roadmap sets out three inter-linked research priorities: (1) Establish organisms and ecosystem physiochemical baselines by increasing the coverage of Arctic physicochemical observations in both space and time; (2) Understand the variability of all stressors in space and time; (3) Map life histories and fish stocks against satellite-derived observations of stressors.
Abstract. Large rivers play an important role in transferring water and all of its constituents, including carbon in its various forms, from the land to the ocean, but the seasonal and inter-annual variations in these riverine flows remain unclear. Satellite Earth observation datasets and reanalysis products can now be used to observe synoptic-scale spatial and temporal variations in the carbonate system within large river outflows. Here, we present the University of Exeter (UNEXE) Satellite Oceanographic Datasets for Acidification (OceanSODA) dataset (OceanSODA-UNEXE) time series, a dataset of the full carbonate system in the surface water outflows of the Amazon (2010–2020) and Congo (2002–2016) rivers. Optimal empirical approaches were used to generate gridded total alkalinity (TA) and dissolved inorganic carbon (DIC) fields in the outflow regions. These combinations were determined by equitably evaluating all combinations of algorithms and inputs against a reference matchup database of in situ observations. Gridded TA and DIC along with gridded temperature and salinity data enable the calculation of the full carbonate system in the surface ocean (which includes pH and the partial pressure of carbon dioxide, pCO2). The algorithm evaluation constitutes a Type-A uncertainty evaluation for TA and DIC, in which model, input and sampling uncertainties are considered. Total combined uncertainties for TA and DIC were propagated through the carbonate system calculation, allowing all variables to be provided with an associated uncertainty estimate. In the Amazon outflow, the total combined uncertainty for TA was 36 µmol kg−1 (weighted root-mean-squared difference, RMSD, of 35 µmol kg−1 and weighted bias of 8 µmol kg−1 for n = 82), whereas it was 44 µmol kg−1 for DIC (weighted RMSD of 44 µmol kg−1 and weighted bias of −6 µmol kg−1 for n = 70). The spatially averaged propagated combined uncertainties for the pCO2 and pH were 85 µatm and 0.08, respectively, where the pH uncertainty was relative to an average pH of 8.19. In the Congo outflow, the combined uncertainty for TA was identified as 29 µmol kg−1 (weighted RMSD of 28 µmol kg−1 and weighted bias of 6 µmol kg−1 for n = 102), whereas it was 40 µmol kg−1 for DIC (weighted RMSD of 37 µmol kg−1 and weighted bias of −16 µmol kg−1 for n = 77). The spatially averaged propagated combined uncertainties for pCO2 and pH were 74 µatm and 0.08, respectively, where the pH uncertainty was relative to an average pH of 8.21. The combined uncertainties in TA and DIC in the Amazon and Congo outflows are lower than the natural variability within their respective regions, allowing the time-varying regional variability to be evaluated. Potential uses of these data would be the assessment of the spatial and temporal flow of carbon from the Amazon and Congo rivers into the Atlantic and the assessment of the riverine-driven carbonate system variations experienced by tropical reefs within the outflow regions. The data presented in this work are available at https://doi.org/10.1594/PANGAEA.946888 (Sims et al., 2023).
Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2 (pCO2), total alkalinity, dissolved inorganic carbon and pH) have been collated, quality-controlled and made publicly available. These carbonate system datasets have highly variable data density in both space and time, especially in the case of pCO2, which is routinely measured at high frequency using underway measuring systems. This variation in data density can create biases when the data are used, for example, for algorithm assessment, favouring datasets or regions with high data density. A common way to overcome data density issues is to bin the data into cells of equal latitude and longitude extent. This leads to bins with spatial areas that are latitude- and projection-dependent (e.g. become smaller and more elongated as the poles are approached). Additionally, as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features, data clusters may be divided sub-optimally (e.g. a bin covering a region with a strong gradient). To overcome these problems and to provide a tool for matching surface in situ data with satellite, model and climatological data, which often have very different spatiotemporal scales both from the in situ data and from each other, a methodology has been created to group in situ data into “regions of interest”: spatiotemporal cylinders consisting of circles on the Earth's surface extending over a period of time. These regions of interest are optimally adjusted to contain as many in situ measurements as possible. All surface in situ measurements of the same parameter contained in a region of interest are collated, including estimated uncertainties and regional summary statistics. The same grouping is applied to each of the non-in situ datasets in turn, producing a dataset of coincident matchups that are consistent in space and time. About 35 million in situ data points were matched with data from five satellite sources and five model and reanalysis datasets to produce a global matchup dataset of carbonate system data, consisting of ∼286 000 regions of interest spanning 54 years from 1957 to 2020. Each region of interest is 100 km in diameter and 10 d in duration. An example application, the reparameterisation of a global total alkalinity algorithm, is presented. This matchup dataset can be updated as and when in situ and other datasets are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example, to enable regional studies. The matchup dataset provides users with a large multi-parameter carbonate system dataset containing data from different sources, in one consistent, collated and standardised format suitable for model–data intercomparisons and model evaluations. The OceanSODA-MDB data can be downloaded from https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022).
Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2 (pCO2), total alkalinity, dissolved inorganic carbon and pH) have been collated, quality controlled and made publicly available. These carbonate system datasets have highly variable data density in both space and time, especially in the case of pCO2, which is routinely measured at high frequency using underway measuring systems. This variation in data density can create biases when the data are used, for example for algorithm assessment, favouring datasets or regions with high data density. A common way to overcome data density issues is to bin the data into cells of equal latitude and longitude extent. This leads to bins with spatial areas that are latitude and projection dependent (e. g. become smaller and more elongated as the poles are approached). Additionally, as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features, data clusters may be divided sub-optimally (e. g. a bin covering a region with a strong gradient). To overcome these problems and to provide a tool for matching surface in situ data with satellite, model and climatological data, which often have very different spatiotemporal scales both from the in situ data and from each other, a methodology has been created to group in situ data into ‘regions of interest’: spatiotemporal cylinders consisting of circles on the Earth’s surface extending over a period of time. These regions of interest are optimally adjusted to contain as many in situ measurements as possible. All surface in situ measurements of the same parameter contained in a region of interest are collated, including estimated uncertainties and regional summary statistics. The same grouping is applied to each of the non-in situ datasets in turn, producing a dataset of coincident matchups that are consistent in space and time. About 35 million in situ data points were matched with data from five satellite sources and five model and re-analysis datasets to produce a global matchup dataset of carbonate system data, consisting of ~286,000 regions of interest spanning 54 years from 1957 to 2020. Each region of interest is 100 km in diameter and 10 days in duration. An example application, the reparameterisation of a global total alkalinity algorithm, is shown. This matchup dataset can be updated as and when in situ and other datasets are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example to enable regional studies. The matchup dataset provides users with a large multiparameter carbonate system dataset containing data from different sources, in one consistent, collated and standardised format suitable for model-data intercomparisons and model evaluations. The OceanSODA-MDB data can be downloaded from https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022).