This chapter contains sections titled: Introduction Conversion of Seismological Data to Geophysical Parameters Inversion Discussion Appendi X: Some Notes on Partial Derivatives Aij
Abstract Crustal earthquake ruptures tend to initiate near fluid-rich zones. However, it is relatively unknown whether fluid-rich zones can further promote or arrest these ruptures. We image the electrical resistivity structure around the focal area of the 2016 Kumamoto earthquake sequence by using 200 sites broad-band magnetotelluric data, and discuss its quantitative relationship to earthquake initiation, growth, and arrest processes. The ruptures that initiated along the outer edge of the low-resistivity fluid-rich zones (<30 Ωm) tended to become large earthquakes, whereas those that initiated either distal to or within the fluid-rich zones did not. The ruptures were arrested by high-temperature (>400°C) fluid-rich zones, whereas shallower low-temperature (200–400°C) fluid-rich zones either promoted or arrested the ruptures. These results suggest that the distribution of mid-crustal fluids contributes to the initiation, growth, and arrest of crustal earthquakes. The pre-failure pressure/temperature gradient (spatial difference) of the pore fluids may contribute to the rupture initiation, propagation, and arrest.