Abstract The origin of Libyan Desert Glass (LDG) found in the western parts of Egypt close to the Libyan border is debated in planetary science. Two major theories of its formation are currently competing: (1) melting by airburst and (2) formation by impact-related melting. While mineralogical and textural evidence for a high-temperature event responsible for the LDG formation is abundant and convincing, minerals and textures indicating high shock pressure have been scarce. This paper provides a nanostructural study of the LDG, showing new evidence of its high-pressure and high-temperature origin. We mainly focused on the investigation of Zr-bearing and phosphate aggregates enclosed within LDG. Micro- and nanostructural evidence obtained with transmission electron microscopy (TEM) are spherical inclusions of cubic, tetragonal, and orthorhombic (Pnma or OII) zirconia after zircon, which indicate high-pressure, high-temperature decomposition of zircon and possibly, melting of ZrO2. Inclusions of amorphous silica and amorphous Al-phosphate with berlinite composition (AlPO4) within mosaic whitlockite and monazite aggregates point at decomposition and melting of phosphates, which formed an emulsion with SiO2 melt. The estimated temperature of the LDG melts was above 2750 °C, approaching the point of SiO2 boiling. The variety of textures with different degrees of quenching immediately next to each other suggests an extreme thermal gradient that existed in LDG through radiation cooling. Additionally, the presence of quenched orthorhombic OII ZrO2 provides direct evidence of high-pressure (>13.5 GPa) conditions, confirming theory 2, the hypervelocity impact origin of the LDG.
The Imourkhssen porphyry Cu±Mo±Au±Ag deposit is located at the Ouzellagh-Siroua Salient (OSS) straddling the boundary between the central Anti-Atlas and the central High Atlas. It is characterized by a typical porphyry-style mineralization. The volcanic rocks are intruded by numerous magmatic rocks of the Ouarzazate Group (580–539 Ma), referred to as the Late Ediacaran magmatic suites (LEMS). Of these, the Askaoun, Imourkhssen, and Imourgane granites are the most significant as they are related to the porphyry mineralization. The entire set is intruded by the Zaghar mafic dyke swarms. Zircon U-Pb dating of the Imourkhssen granite and the ore-bearing granite porphyry shows that these intrusive rocks were emplaced at 558 ± 1 and 550 ± 2 Ma, respectively. Moreover, the whole-rock major and trace element geochemistry reveal a high-K calc-alkaline I-type composition, consistent with an emplacement in a post-collisional setting under a trans-tensional tectonic regime. Ore bodies are hosted by the Askaoun granodiorite as well as the Imourgane granite. The mineralization occurs as fine-grained dissemination and infills of hydrothermally altered NNE–SSW to N–S trending veins and veinlets. Ore-related hydrothermal alteration consists of potassic, chlorite-sericite, serecitic, and propylitic mineral assemblages along with pervasive silicification and pyritization, providing a porphyry-style alteration pattern. The ore periods comprise supergene and magmatic-hydrothermal periods. The latter includes primary dissemination and secondary NNE–SSW to N–S ore-bearing system stages. The occurrence of molybdenite is either restricted to the potassic and chlorite-sericite alteration zones of the ore-bearing granite as fine disseminations or alternatively as veinlet infills within the propylitic halos. The molybdenite occurrences along with pyrite, chalcopyrite, galena, and tennantite dissemination are assigned to the primary ore stage, while the NNE–SSW to N–S ore-bearing system is related to the secondary ore stage. It consists of pyrite, chalcopyrite, bornite, covellite, diagenite, sphalerite, hematite, galena, gold, and chenguodaite. The predominance of cockade and crack-and-seal textures suggest multiple episodes of ore-forming fluid circulations under epithermal conditions. The supergene stage is achieved by subordinate malachite, azurite, barite, hematite, epsomite, and chrysocolla. From the descriptions above, we argue that the Imourkhssen Cu±Mo±Au±Ag mineralization shares many mineralogical and paragenetic attributes of porphyry-copper deposits.
The Tifnoute valley Cu-Mo±Au mineral occurrences are located NW of Siroua massif in the central Moroccan Anti-Atlas. This mineralization appears to be associated to the Imourkhssan granite and the Asskaoun granodiorite dated respectively 561 ± 3 and 558 ± 2 Ma. These highly potassic granitoids show an arc signature and are in-placed in an extensional tectonic setting typical of the post-collision Late Pan-African period. In places, these rocks are strongly to slightly affected by hydrothermal alterations of phyllic, propylitic and argillic types with development of a pyritic facies around the Imourkhssan granite. The mineralization can be divided into two types: A molybdenite mineralization and some sulphides spatially linked to the Imourkhssan granite. It is disseminated in the granite or appears in lamellar or pluri-millimetric fragments. It also occurs as spots and nets along chloritized fractures planes oriented NNE-SSW and dipping 40 to 60 SE. The paragenesis consists of molybdenite, pyrite, chalcopyrite and sphalerite. Talat N’Lbnour Cu-Au mineralization linked to NS fractures affecting Askaoun granodiorite. The vein is about 0.5 to 2 m thick that extends about 400 m. The mineralized fractures are filled essentially with quartz, siderite and chlorite. Metallographic study reveals a diverse paragenesis that consists of pyrite, chalcopyrite, gold, bornite and chalcocite. The secondary paragenesis consists of chalcopyrite, covellite, bornite, malachite, azurite and hematite. These features of these mineralizations are discussed in the context of an arc-type Cu-Mo±Au porphyry mineralization. Keywords: Anti-Atlas, Siroua, Molybdenum, Copper, Gold, Porphyry.