Analogue models are commonly used to gain insights into large-scale volcano-tectonic processes. Documenting model surface topography and the three-dimensional (3D) aspect of deformation structures remains the greatest challenge in understanding the simulated processes. Here we present the results of volcano analogue models imaged with an X-ray computerized micro-tomography (μCT) system developed at the Ghent University Centre for Tomography (UGCT). Experiments simulate volcano deformation due to gravitational loading over a ductile layer, a process affecting many natural volcanoes built over a sedimentary substratum. Results show that μCT is able to provide a 3D reconstruction of the model topography with unprecedented resolution. Virtual cross sections through reconstructed models enable us to map the main structures at depth and to document the deformation of the brittle-ductile interface due to contrasting X-ray attenuation. Results for lateral spreading and vertical sagging into thin and thick ductile layers, respectively, are illustrated for circular cones and elongated ridges. Results highlight structural patterns not seen in previous models, such as: 1) the 3D form of a polygonal brecciated zone at the center of spreading cones; 2) the complete lack of such a zone in sagging cones; and 3) relay structures between graben-bounding faults in spreading cones. In addition, detailed imaging of tension gashes and of the flexure surface below sagging cones enables the 3D strain distribution to be explored. Experiments with non-cohesive and low cohesion granular materials present striking differences in surface topography and fault characteristics. Despite limitations associated with the scan duration, μCT reconstruction of analogue models appears a powerful tool for better understanding the complex 3D deformation associated with volcano-tectonic processes.
<p>When magma ascends through the shallow parts of terrestrial planetary crust, it deforms the surrounding host rocks. The deformation patterns observed at the surface offer indirect means to characterize the position, geometry and volume of subsurface magmatic intrusions. To enable real-time eruption forecasting during volcano unrest, most volcano geodetic models assume that magma intrusion induces linearly elastic deformation of homogeneous shallow planetary crust. Other indirect geophysical volcano monitoring data (e.g., seismology, gravimetry) however offer only limited opportunity for validating geodetic model results. Moreover, recent geological observations at exhumed volcano plumbing systems and geophysical observations of recent intrusion events have shown that plastic behaviour can dominate in heavily fractured and heterogeneous volcanic edifices and tectonically active areas. The question remains how large the effect of unaccounted plastic deformation could be on estimated intrusion characteristics.</p><p>Scaled laboratory experiments can be an innovative tool to assess by how much modelled magma intrusion characteristics &#8211; volume, geometry, position &#8211; deviate from reality in circumstances where plastic deformation processes are important. We used a tensile rectangular dislocation in a homogeneous, linearly elastic half-space to invert the three components of near-surface displacements extracted from X-ray Computed Tomography imagery of laboratory experiments of analogue dyke injection in cohesive mixtures of quartz sand and gypsum powder. The model results favored by the inversions are then compared to the three-dimensional characteristics of the analogue magma intrusions observed in the X-ray CT imagery. To further investigate the effect of more complex model geometry, we also used a tensile distributed-opening dislocation geometry. Preliminary results show that inversion results can be improved by fixing values of parameters that control the position of the modelled dislocation, but significant discrepancies remain between the modelled and observed intrusion geometry, orientation and volume. This test study helps gaining insight on the limitations of commonly used volcano geodetic modelling and inversion methods, and provides a novel basis for interpreting geological, geodetic and geophysical data related to volcanic deformation. The experimental results pave the way for developing complex forward models of magma-induced deformation in the heterogeneous shallow crust of terrestrial planets.</p>
3D models of pumiceous achneliths. '.stl' files can be viewed nateively in windows 8, or using open source software such as Meshlab. Data derived from XCT scans at the University of Edinburgh School fo Geosciences. File size constraints mean interior vesicles have been filled, and simplified (decimated) versions are also provided. Reconstructed XCT data is available from Ben Clarke on request. Published in Clarke et al. 2019. Nat Comms.
Abstract Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km 3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low‐level charge layer from ground‐hugging currents.
Abstract Over the past two decades, multidisciplinary studies have unearthed a rich history of volcanic activity and unrest in the densely-populated East African Rift System, providing new insights into the influence of rift dynamics on magmatism, the characteristics of the volcanic plumbing systems and the foundation for hazard assessments. The raised awareness of volcanic hazards is driving a shift from crisis response to reducing disaster risks, but a lack of institutional and human capacity in sub-Saharan Africa means baseline data are sparse and mitigating geohazards remains challenging.
The Southern and Austral Volcanic Zones of the Andes comprise 74 volcanic centres with known post-glacial activity. At least 21 of these have had one or more large explosive eruptions in the late Quaternary, dispersing tephra over vast areas. These tephra layers therefore have great potential as tephrochronological marker horizons in palaeoenvironmental studies in southern Chile and Argentina, a region that is particularly useful to study climate dynamics of the southern hemisphere. However, to date tephrochronology has rarely been fully utilised in this region as a correlation and dating tool. Here we review the existing post-glacial tephrostratigraphic record of the Southern and Austral Volcanic Zones, and compile a database of known occurrences of tephra from these volcanoes in ice and lacustrine, marine, peat, and cave sediment records. We address the inconsistencies in and revisions of the tephrostratigraphies presented in prior literature, and discuss the challenges in correlating tephras and the limitations of the tephrostratigraphic record in this area. This study highlights the many gaps that still exist in our knowledge of the eruptive histories of these volcanoes, but also reveals the largely under-utilised potential of tephra as a correlation tool in this region. This is exemplified by the severe lack of adequate geochemical analysis of tephra layers preserved in many lacustrine and peat sediment sections, which are particularly important tephrostratigraphic records in southern Chile and Argentina due to the paucity of surface preservation.