The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.
Purkinje neurons of the cerebellar cortex from a chemically and morphologically heterogeneous population containing some members that have gamma-aminobutyric acid (GABA), others that have immunoreactivity for motilin, and a small number that have both. The remaining 30-40% of all Purkinje cells have neither of these two neuroactive substances, leaving possibilities for other transmitter candidates. The evidence was compiled from double-staining immunocytochemical procedures performed on single sections of the cerebellum and brain stem in rat, mouse, and monkey. Two polyclonal antibodies were applied in succession, one directed against the midregion and COOH terminus of the 22-amino acid polypeptide motilin and the other against glutamic acid decarboxylase (glutamate decarboxylase; L-glutamate 1-carboxy-lyase, EC 4.1.1.15), the rate-limiting enzyme in the synthesis of the neurotransmitter GABA. The staining combinations employed the immunoperoxidase method, with different chromogens for distinguishing the motilin-like immunoreactivity from glutamic acid decarboxylase immunoreactivity by different colors, or the immunoperoxidase method for one antiserum and immunofluorescence for the other. The locations of both motilin and GABA cell types were mapped. The recognition of motilin in Purkinje cells calls for experimental definition of the role of this substance in the cerebellum and for reevaluation of the roles of Purkinje cells and of GABA in cerebellar function. The significant motilin representation in the flocculus, paraflocculus, and vermis suggests that it may be the Purkinje cell mediative chemical in the vestibular parts of the cerebellum. However, the presence of GABA as well in the same regions indicates that the chemical preference may be at least bimodal.
The opioid peptide dynorphin is widely distributed in neuronal tissue of rats. By immunocytochemical methods, it was shown previously that dynorphin-like immunoreactivity is present in the posterior pituitary and the cells of the hypothalamic neurosecretory magnocellular nuclei which also are responsible for the synthesis of oxytocin, vasopressin, and their neurophysins. By using an affinity-purified antiserum to the non-enkephalin part of the dynorphin molecule it has now been demonstrated that dynorphin and vasopressin occur in the same hypothalamic cells of rats, whereas dynorphin and oxytocin occur in separate cells. Homozygous Brattleboro rats (deficient in vasopressin) have magnocellular neurons that contain dynorphin separate from oxytocin. Thus dynorphin and vasopressin, although they occur in the same cells, appear to be under separate genetic control and presumably arise from different precursors.
A monoclonal antibody (mAb L6) to a small-cell lung carcinoma surface antigen recognizes a common epitope of vasopressin-neurophysin and oxytocin-neurophysin in hypothalamic nuclei. We now report on the identification of a neurophysin-like precursor in human lung carcinoma (LX-1) cell membrane. mAb L6 immunoaffinity chromatography of solubilized membranes resulted in a single band of approximately 45 kDa. Western blot analysis demonstrated immunoreactivity of this band with mAb L6, anti-vasopressin, and an antibody to the vasopressin precursor, pro-pressophysin. N-terminal sequencing of this band demonstrated a 21-amino acid homology with the N terminus of human pro-pressophysin, and substitution of a Cys33 residue in the tumor antigen with Arg33. Absence of immunoreactivity with the antibodies described above in cytosolic extracts and culture medium suggests nonsecretion of processed or intact pro-pressophysin-like peptide. Northern analysis of LX-1 mRNA with a 30-mer to the C terminus of rat pro-pressophysin resulted in a band of approximately 1000 base pairs, 250 base pairs larger than hypothalamic message. In situ hybridization of LX-1 tumor-bearing nude rat brain with the same probe demonstrated specific hybridization in rat hypothalamus and xenografted tumor. These findings suggest expression of a pro-pressophysin-like protein in this tumor cell line that is preferentially targeted to the cell membrane.