Significance A successful mitigation strategy for climate warming agents such as black carbon (BC) requires reliable source information from bottom-up emission inventory data, which can only be verified by observation. We measured BC in one of the fastest-warming and, at the same time, substantially understudied regions on our planet, the northeastern Siberian Arctic. Our observations, compared with an atmospheric transport model, imply that quantification and spatial allocation of emissions at high latitudes, specifically in the Russian Arctic, need improvement by reallocating emissions and significantly shifting source contributions for the transport, domestic, power plant, and gas flaring sectors. This strong shift in reported emissions has potentially considerable implications for climate modeling and BC mitigation efforts.
Black carbon (BC) aerosol particles contribute to climate warming of the Arctic, yet both the sources and the source-related effects are currently poorly constrained. Bottom-up emission inventory (EI) approaches are challenged for BC in general and the Arctic in particular. For example, estimates from three different EI models on the fractional contribution to BC from biomass burning (north of 60° N) vary between 11% and 68%, each acknowledging large uncertainties. Here we present the first dual-carbon isotope-based (Δ(14)C and δ(13)C) source apportionment of elemental carbon (EC), the mass-based correspondent to optically defined BC, in the Arctic atmosphere. It targeted 14 high-loading and high-pollution events during January through March of 2009 at the Zeppelin Observatory (79° N; Svalbard, Norway), with these representing one-third of the total sampling period that was yet responsible for three-quarters of the total EC loading. The top-down source-diagnostic (14)C fingerprint constrained that 52 ± 15% (n = 12) of the EC stemmed from biomass burning. Including also two samples with 95% and 98% biomass contribution yield 57 ± 21% of EC from biomass burning. Significant variability in the stable carbon isotope signature indicated temporally shifting emissions between different fossil sources, likely including liquid fossil and gas flaring. Improved source constraints of Arctic BC both aids better understanding of effects and guides policy actions to mitigate emissions.
<p>Biomass burning on the African continent emits large amounts of CO<sub>2</sub>, CO, and aerosols. Our aim is to use measurements of the stable carbon isotope <sup>13</sup>C in organic carbon, CO and CO<sub>2</sub> in biomass burning smoke to estimate the contribution of C3 plants (trees and bushes) and C4 plants (mainly Savannah grass), which have very distinct <sup>13</sup>C/<sup>12</sup>C ratios. This is possible, if <sup>13</sup>C/<sup>12</sup>C ratios are not significantly altered by the combustion process. This assumption is investigated in a series of laboratory experiments, where C3 and C4 plants (corn and willow wood), or C3-C4 plant mixtures are burned. The laboratory results are used to interpret the results of pilot studies of smoke sampled in African savannah fires.</p><p>&#160;</p><p>First results from the laboratory studies indicate that organic carbon (OC) from combustion of willow or corn shows <sup>13</sup>C/<sup>12</sup>C ratios comparable to the burned plant material. For combustion of willow (C3), the <sup>13</sup>C/<sup>12</sup>C ratios in OC tend to be slightly higher than in the wood fuel, depending on combustion conditions. For combustion of corn <sup>13</sup>C/<sup>12</sup>C ratios of OC tend to be slightly lower than in the fuel. For mixtures of willow and corn the relationship between <sup>13</sup>C/<sup>12</sup>C ratios in the emitted organic carbon and the fuel mixture is slightly non-linear: For a 50-50% oak wood and corn mixture the <sup>13</sup>C/<sup>12</sup>C ratio in OC is closer to that of corn than that of willow. First results from pilot field studies indicate that a larger fraction of OC comes from trees and bushes, although mainly Savannah grass is burned in the investigated fires.</p>
Zusammenfassung In 24 Luftfilterproben, welche im Laufe des Jahres 1973 mit Flugzeugen im Bereich von ±2 000 m relativ zur Höhe H der Tropopause genommen wurden, erfolgte die gammaspektrometrische Bestimmung der Konzentration von Be-7, Cs-137 und jungen Spaltfragmenten. Die Konzentrationsänderung ist im Bereich von H ±500 m am grössten und erreicht einen Faktor 10; aus dem bekannten Verlauf der Produktionsrate von Be-7 mit der Höhe kann auf die lokale meteorologische Halbwertszeit Tmet seiner Trägeraerosole geschlossen werden. Sie beträgt 2 000 m oberhalb der Tropopause ea 90 Tage, 1 000 m unterhalb noch etwa 4 Tage.ABSTRACT The concentration of Be-7, Cs-137 and shortlived fission products of 24 airfilter samples collected in 1973 by aircraft in the range of ±2 000 m relative to the height H of the tropopause has been measured by means of gammaspectrometry. The variation of the concentration was revealed to be maximal in the region of H ±500 m where it reaches a value of 10; from the well known pattern of production of Be-7 in function of the height it is possible to determine the local meteorological half-life Tmet of its carrier aerosols. It amounts to about 90 days at 2 000 m above respectively 4 days at 1 000 m below the tropopause.
Aerosols change the Earth's energy balance. Black carbon (BC) aerosols are a product of incomplete combustion of fossil fuels and biomass burning and cause a net warming through aerosol radiation i ...
Abstract. Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements are challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C3 and C4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC, and residual char were the most reliable tracers of the fuel 13C signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in 13C compared to smouldering combustion emissions. For CH4 and OC, the fractionation was the other way round for C3 emissions (13C-enriched) and C4 emissions (13C-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C3 or C4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel fire based on the δ13C signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa Special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provided a range of C3:C4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C3-to-C4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C3:C4 ratio in the field or other processes caused this depletion. Although additional field measurements are needed, our results indicate that C3-vs.-C4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges.
Abstract. Biomass burning (BB) emits large quantities of greenhouse gases (GHG) and aerosols that impact the climate and adversely affect human health. Although much research has focused on quantifying BB emissions on regional to global scales, field measurements of BB emission factors (EFs) are sparse, clustered and indicate high spatio-temporal variability. EFs are generally calculated from ground or aeroplane measurements with respective potential biases towards smouldering or flaming combustion products. Unmanned aerial systems (UAS) have the potential to measure BB EFs in fresh smoke, targeting different parts of the plume at relatively low cost. We propose a light-weight UAS-based method to measure EFs for carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) as well as PM2.5 (TSI Sidepak AM520) and equivalent black carbon (eBC, microAeth AE51) using a combination of a sampling system with Tedlar bags which can be analysed on the ground and with airborne aerosol sensors. In this study, we address the main challenges associated with this approach: (1) the degree to which a limited number of samples is representative for the integral smoke plume and (2) the performance of the lightweight aerosol sensors. While aerosol measurements can be made continuously in a UAS set-up thanks to the lightweight analysers, the representativeness of our Tedlar bag filling approach was tested during prescribed burning experiments in the Kruger National Park, South Africa. We compared fire-averaged EFs from UAS-sampled bags for savanna fires with integrated EFs from co-located mast measurements. Both measurements matched reasonably well with linear R2 ranging from 0.81 to 0.94. Both aerosol sensors are not factory calibrated for BB particles and therefore require additional calibration. In a series of smoke chamber experiments, we compared the lightweight sensors with high-fidelity equipment to empirically determine specific calibration factors (CF) for measuring BB particles. For the PM mass concentration from a TSI Sidepak AM520, we found an optimal CF of 0.27, using a scanning mobility particle sizer and gravimetric reference methods, although the CF varied for different vegetation fuel types. Measurements of eBC from the Aethlabs AE51 aethalometer agreed well with the multi-wavelength aethalometer (AE33) (linear R2 of 0.95 at λ=880 nm) and the wavelength corrected multi-angle absorption photometer (MAAP, R2 of 0.83 measuring at λ=637 nm). However, the high variability in observed BB mass absorption cross-section (MAC) values (5.2±5.1 m2 g−1) suggested re-calibration may be required for individual fires. Overall, our results indicate that the proposed UAS set-up can obtain representative BB EFs for individual savanna fires if proper correction factors are applied and operating limitations are well understood.