Abstract Alpine‐type orogens are interpreted to result from the collision of former rifted margins. As many present‐day rifted margins consist of hyper‐extended domains floored by thinned continental crust (<10 km) and/or exhumed mantle, this study explores the influence of rift inheritance on the architecture and final evolution of Alpine‐type orogens. We propose that rift‐related necking zones, separating weakly thinned 25‐ to 30‐km‐thick crust from hyper‐extended domains, may act as buttresses during the transition from subduction to collision. As a result, former necking zones may now be found at the boundary between a highly deformed and overthickened nappe stack, made of relics of hyper‐extended domains, and an external, weakly deformed fold‐and‐thrust belt, which largely escaped significant rift‐related crustal thinning and orogeny‐related thickening. Therefore, the role of rift inheritance is of critical importance and is largely underestimated in controlling the architecture and evolution of Alpine‐type orogens.
<p>&#160; &#160; The Valencia Trough is commonly included as part of the set of western Mediterranean Cenozoic extensional basins that formed in relation with the Tethyan oceanic slab rollback during the latest Oligocene to early Miocene. It lies in a complex tectonic setting between the Gulf of Lions to the North-West, the Catalan Coastal Range and the Iberian chain to the West, the Balearic promontory to the East and the Betic orogenic system to the South. This rifting period is coeval with or directly followed by the development of the external Betics fold and thrust belts at the southern tip of the Valencia Trough. Recent investigations suggest that the Valencia Trough is segmented into two main domains exhibiting different geological and geophysical characteristics between its northeastern and southwestern parts. The presence of numerous Cenozoic normal faults and the well-studied subsidence pattern evolution of the NE part of the Valencia Trough suggest that it mainly formed coevally with the rifting of Gulf of Lion. However, if a significant post-Oligocene subsidence is also evidenced in its SW part; fewer Cenozoic rift structures are observed suggesting that the subsidence pattern likely results from the interference of different processes.</p><p>&#160; &#160; In this presentation, we quantify the post-Oligocene subsidence history of the SW part of the Valencia Trough with the aim of evaluating the potential mechanisms explaining this apparent subsidence discrepancy. We analyzed the spatial and temporal distribution of the post-Oligocene subsidence using the interpretation of a dense grid of high-quality multi-channel seismic profiles, also integrating drill-hole results and velocity information from expanding spread profiles (ESP). We used the mapping of the main unconformities, especially the so-called Oligocene unconformity, to perform a 3D flexural backstripping, which permits the prediction of the post-Oligocene water-loaded subsidence. Our results confirm that the post-Oligocene subsidence of the SW part of the Valencia Trough cannot be explained by the rifting of the Gulf of Lions. Previous works already showed that the extreme crustal thinning observed to the SW is related to a previous Mesozoic rift event. Here, we further highlight that if few Cenozoic extensional structures are observed, they can be interpreted as gravitational features rooting at the regionally identified Upper Triassic evaporite level. Backstripping results combined with the mapping of the first sediments deposited on top of the Oligocene unconformity show that they are largely controlled by the shape of Betic front with a possible additional effect of preserved Mesozoic structures. At larger scale, we compare the mechanisms accounting for the origin and subsidence at the SW part of the Valencia Trough with those responsible for the subsidence of its NE part and the Gulf of Lions.</p>
Gamma ray attenuation (GRA) data were acquired using a Cs-137 collimated source and a sodium iodide (thallium), or NaI(Tl), scintillation detector. The signal was calibrated using water and aluminum standards to provide a proxy for bulk density. This measurement was performed by a sensor mounted on either the Whole-Round Multisensor Logger (WRMSL) or the Special Task Multisensor Logger (STMSL); which track was used for a given data set is indicated in the data.
<p>Belonging to the Maghrebides system, the Rif belt (Northern Morocco) suffered an important Cenozoic Alpine compressional deformation as a consequence of the closure of the Maghrebian Tethys and the westward translation and docking of the Alboran Domain onto the African margin during the Late Burdigalian. The Mesozoic North African Margin is still partially preserved in the Eastern Rif (e.g., Senhadja Jurassic-Cretaceous unit) and inverted in its Central portion (North of the Nekor Fault Zone) due to the high shortening in this area. It is in agreement with sub-surface data suggesting that the thickest crust along the chain is located in the central Rif (Izzaren Area, External Rif), and can be interpreted as a deep-rooted crustal imbrication.</p><p>This contribution aims to characterize the role of the structural inheritance of the rifted North African margin in the development and the propagation of the Rif belt by the combination of paleothermal and structural data collected along a NE-SW regional transect (between Chefchaouen and Ouezzane provinces), focusing mainly on the external zones (namely, Intrarif, Mesorif and Prerif) sampling the deformed domains originally developed along the North African paleo-passive margin. A new paleo-thermal dataset of vitrinite reflectance (Ro%), micro-Raman spectroscopy on organic matter and XRD on clayey fraction of sediments displays levels of thermal maturity between early and deep diagenetic conditions (Ro% from 0.49% to 1.15%). The highest thermal maturity values along the section are concentrated in the Lower to middle Cretaceous Loukkos Intrarifain sub-unit that is structurally squeezed between Tangier Intrarif Upper Cretaceous sub-unit and the Mesorif &#8220;Izzaren Duplex&#8221;. It attests for an important amount of shortening leading to the development of an imbricate fan of thrusts.</p><p>The geometry of the &#8220;Izzaren Duplex&#8221;, limited at surface by two first-order thrust faults, is controlled by pre-existing tectonic structures, probably inherited by the former architecture of the North African paleomargin. Moreover, the Chattian-Middle Miocene siliciclastic succession filling the Zoumi basin is in a stratigraphic continuity with the Izzaren Upper Jurassic-Upper Cretaceous substratum, sheding new light on its geodynamic meaning. This observation is supported by the homogeneity of deformation and the absence of thermal jump between the Mesozoic and Cenozoic successions, attesting for an active compressive deformation in the area between the Late Serravalian and Late Tortonian.</p><p>In conclusion, the combination of paleo-thermal and structural analysis allowed to reconstruct robust tectono-thermal model in order to propose an accurate reconstruction of the structural evolution and a new geological restoration of the Rif belt with respect to the geometry of the rifted paleo-margin.</p>
<p>Before Break-Up, the opening of the South China Sea Passive Margin (SCS) was characterized by a wide rift mode during Cenozoic rifting. Such wide extensional margin (>600 km wide) is controlled by a set of hyper-extended sub-basins separated by basement highs.</p><p>These basins infill recorded a polyphased extensional deformation hence resulting in complex 3D sedimentary evolution. Based on a recent industrial 3D seismic reflection survey along the Sabah area (southern margin of the SCS), this contribution aims to investigate the detailed 3D geometries of extensional structures as well as their control on the overlying successive sedimentary sequences and relation to crustal deformation.</p><p>We mapped and analyzed several crustal-scale rolling hinge structures controlled by a series of low-angle normal faults. Deeper crustal levels are likely exhumed along the core of these rolling hinge structures, separated by extensional allochthones blocs of upper continental crust. Our structural analysis enables us to identify three main extensional phases corresponding to distinct sedimentary packages: (1) a synrift sequence 1 controlled by small offset normal faults formed during incipient rifting; (2) an intermediate synrift sequence 2 recording the development of extensional detachment faults. (3) a thick syn-rift sequence 3 recording a continuation of extension along the detachment faults resulting in the dismembering of the syn-<br>rift sequence 2. Intra-basement seismic reflectors dipping towards the north-west are observed, onto which extensional structures often seem to root. Some of these reflectors are interpreted as interleaved thrust sheets from a dismantled accretionary wedge of the former Mesozoic active margin (Yenshanian magmatic Arc).</p><p>Our results provide new key observations on the 3D mechanisms of detachment faulting and its control on sedimentary evolution as well as coeval crustal deformation. 3D approach throw some light on the detailed geometries of a metamorphic core-complex in relation with crustal boudinage, shear zones and lower/middle crust exhumation below the syn- rift sediments. These geometries can be compared to those described in the Basin and Range province or the Aegean Sea. Consequently, our results have implications for our understanding of rift and breakup mechanisms of marginal basins as a whole.</p>