ABSTRACT We explore the chemodynamical properties of a sample of barred galaxies in the Auriga magnetohydrodynamical cosmological zoom-in simulations, which form boxy/peanut (b/p) bulges, and compare these to the Milky Way (MW). We show that the Auriga galaxies which best reproduce the chemodynamical properties of stellar populations in the MW bulge have quiescent merger histories since redshift z ∼ 3.5: their last major merger occurs at $t_{\rm lookback}\gt 12\, \rm Gyr$, while subsequent mergers have a stellar mass ratio of ≤1:20, suggesting an upper limit of a few per cent for the mass ratio of the recently proposed Gaia Sausage/Enceladus merger. These Auriga MW-analogues have a negligible fraction of ex-situ stars in the b/p region ($\lt 1{{\ \rm per\ cent}}$), with flattened, thick disc-like metal-poor stellar populations. The average fraction of ex-situ stars in the central regions of all Auriga galaxies with b/p’s is 3 per cent – significantly lower than in those which do not host a b/p or a bar. While the central regions of these barred galaxies contain the oldest populations, they also have stars younger than 5 Gyr (>30 per cent) and exhibit X-shaped age and abundance distributions. Examining the discs in our sample, we find that in some cases a star-forming ring forms around the bar, which alters the metallicity of the inner regions of the galaxy. Further out in the disc, bar-induced resonances lead to metal-rich ridges in the Vϕ − r plane – the longest of which is due to the Outer Lindblad Resonance. Our results suggest the Milky Way has an uncommonly quiet merger history, which leads to an essentially in-situ bulge, and highlight the significant effects the bar can have on the surrounding disc.
We have developed a new tool to analyse galaxies in the EAGLE simulations as close as possible to observations.We investigated the evolution of their kinematic properties by means of the angular momentum proxy parameter,$ \lambda_{Re} $for galaxies with $M_{*} \ge 5 \times 10^{9} M_{\odot}$ in the RefL0100N1504 simulation up to redshift two (z = 2). Galaxies in the simulation show a wide variety of kinematic features, similiar to those found in integral-field spectroscopic studies. At z=0 the distribution of galaxies in the ${\lambda}_{Re}-{\epsilon}$ plane is also in good agreement with results from observations. Scaling relations at z = 0 indicate that there is critical mass, $M_{crit} = 10^{10.3} M_{\odot}$, that divides two different regimes when we include the ${\lambda}_{Re}$ parameter. The simulation shows that the distribution of galaxies in the ${\lambda}_{Re}-{\epsilon}$ plane evolves with time until z = 2 when galaxies are equally distributed both in ${\lambda}_{Re}$ and ${\epsilon}$. We studied the evolution of ${\lambda}_{Re}$ with time and found that there is no connection between the angular momentum at z = 2 and z = 0. All systems reach their maximum ${\lambda}_{Re}$ at z = 1 and then steadily lose angular momentum regardless of their merger history, except for the high star-forming systems that sustain that maximum value over time. The evolution of the Re in galaxies that have not experienced any merger in the last 10 Gyr can be explained by their level of gas accretion.
Theoretical works have shown that off-plane motions of bars can heat stars in the vertical direction during buckling but is not clear how do they affect the rest of components of the Stellar Velocity Ellipsoid (SVE). We study the 2D spatial distribution of the vertical, $\sigma_{z}$, azimuthal, $\sigma_{\phi}$ and radial, $\sigma_{r}$ velocity dispersions in the inner regions of Auriga galaxies, a set of high-resolution magneto-hydrodynamical cosmological zoom-in simulations, to unveil the influence of the bar on the stellar kinematics. $\sigma_{z}$ and $\sigma_{\phi}$ maps exhibit non-axisymmetric features that closely match the bar light distribution with low $\sigma$ regions along the bar major axis and high values in the perpendicular direction. On the other hand, $\sigma_{r}$ velocity dispersion maps present more axisymmetric distributions. We show that isophotal profile differences best capture the impact of the bar on the three SVE components providing strong correlations with bar morphology proxies although there is no relation with individual $\sigma$. Time evolution analysis shows that these differences are a consequence of the bar formation and that they tightly coevolve with the strength of the bar. We discuss the presence of different behaviours of $\sigma_{z}$ and its connection with observations. This work helps us understand the intrinsic $\sigma$ distribution and motivates the use of isophotal profiles as a mean to quantify the effect of bars.
The aim of our study is to use dynamical simulations to explore the influence of two important dynamical bar parameters, bar strength and bar pattern speed on the shape of the bar dust lanes. To quantify the shape of the dust lanes we have developed a new systematic method to measure the dust lane curvature. Previous numerical simulations have compared the curvature of bar dust lanes with the bar strength, predicting a relation between both parameters which has been supported by observational studies but with a large spread. We take into account the bar pattern speed to explore, simultaneously, the effect of both parameters on the dust lane shape. To that end, we separate our galactic bars in fast bars |$\left(1 < \mathcal {R} < 1.4 \right)$| and slow bars |$\left(\mathcal {R} > 1.4 \right)$|, obtaining, as previous simulations, an inverse relation between the dust lane curvature and the bar strength for fast bars. For the first time, we extend the study to slow bars, finding a constant curvature as a function of the bar strength. As a result, we conclude that weak bars with straight dust lanes are candidates for slow bars. Finally, we have analysed a pilot sample of 10 S4G galaxies, obtaining dust lane curvatures lying within the range covered by the simulations.
We continue the exploration of the BaLROG (Bars in Low Redshift Optical Galaxies) sample: 16 large mosaics of barred galaxies observed with the integral field unit SAURON. We quantify the influence of bars on the composition of the stellar component. We derive linestrength indices of H${\beta}$, Fe5015 and Mgb. Based on single stellar population (SSP) models, we calculate ages, metallicities and [Mg/Fe] abundances and their gradients along the bar major and minor axes. The high spatial resolution of our data allows us to identify breaks among index and SSP profiles, commonly at 0.13$\pm$0.06 bar length, consistent with kinematic features. Inner gradients are about ten times steeper than outer gradients and become larger when there is a central rotating component, implying that the gradients are not independent of dynamics and orbits. Central ages appear to be younger for stronger bars. Yet, the bar regions are usually old. We find a flattening of the iron (Fe5015) and magnesium (Mgb) outer gradients along the bar major axis, translating into a flattening of the metallicity gradient. This gradient is found to be 0.03$\pm$0.07 dex/kpc along the bar major axis while the mean value of the bar minor axis compares well with that of an unbarred control sample and is significantly steeper, namely -0.20$\pm$0.04 dex/kpc. These results confirm recent simulations and discern the important localized influence of bars. The elevated [Mg/Fe] abundances of bars and bulges compared to the lower values of discs suggest an early formation, in particular for early type galaxies.
Numerical simulations predict that bars represent a very important agent for triggering gas inflows, which in turn could lead to central star formation. Bars thus are thought to contribute to the formation of the bulge. This process changes both the gaseous-phase and the stellar-phase metallicities in the centres of galaxies. With the aim of quantifying the importance of this process, we present a comparative study of the gaseous-phase and stellar-phase metallicities in the centres of members of a sample of barred and unbarred galaxies from SDSS. We do not find a significant difference in the metallicity (neither gaseous nor stellar) between barred and unbarred galaxies, but we find different trends in the metallicities of early- and late-type galaxies, with larger differences in the metallicity in the early-type subsample. Our results contradict some previous research in this field, but we find a possible origin of the discrepancies between previous works and our results.
The connection between the Stellar Velocity Ellipsoid (SVE) and the dynamical evolution of galaxies has been a matter of debate in the last years and there is no clear consensus whether different heating agents (e.g. spiral arms, giant molecular clouds, bars and mergers) leave clear detectable signatures in the present day kinematics. Most of these results are based on a single and global SVE and have not taken into account that these agents do not necessarily equally affect all regions of the stellar disc.We study the 2D spatial distribution of the SVE across the stellar discs of Auriga galaxies, a set of high resolution magneto-hydrodynamical cosmological zoom-in simulations, to unveil the connection between local and global kinematic properties in the disc region. We find very similar, global, $\sigma_{z}/\sigma_{r}$= 0.80$\pm$ 0.08 values for galaxies of different Hubble types. This shows that the global properties of the SVE at z=0 are not a good indicator of the heating and cooling events experienced by galaxies. We also find that similar $\sigma_{z}/\sigma_{r}$radial profiles are obtained through different combinations of $\sigma_{z}$ and $\sigma_{r}$ trends: at a local level, the vertical and radial components can evolve differently, leading to similar $\sigma_{z}/\sigma_{r}$ profiles at z=0. By contrast, the 2D spatial distribution of the SVE varies a lot more from galaxy to galaxy. Present day features in the SVE spatial distribution may be associated with specific interactions such as fly-by encounters or the accretion of low mass satellites even in the cases when the global SVE is not affected. The stellar populations decomposition reveals that young stellar populations present colder and less isotropic SVEs and more complex 2D distributions than their older and hotter counterparts.
ABSTRACT In this work we analyse the structural and photometric properties of 21 barred simulated galaxies from the Auriga Project. These consist of Milky Way-mass magnetohydrodynamical simulations in a Λ cold dark matter (ΛCDM) cosmological context. In order to compare with observations, we generate synthetic SDSS-like broad-band images from the numerical data at z = 0 with different inclinations (from face-on to edge-on). Ellipse fits are used to determine the bar lengths, and 2D bulge/disc/bar decompositions with galfit are also performed, modelling the bar component with the modified Ferrer profile. We find a wide range of bar sizes and luminosities in the sample, and their structural parameters are in good agreement with the observations. All bulges present low Sérsic indexes, and are classified as pseudobulges. In regard to the discs, the same breaks in the surface brightness profiles observed in real galaxies are found, and the radii at which these take place are in agreement with the observations. Also, from edge-on unsharp-masked images at z = 0, boxy or peanut-shaped (B/P) structures are clearly identified in the inner part of four bars, and also two more bars are found in buckling phase. The sizes of the B/P match fairly well with those obtained from observations. We thus conclude that the observed photometric and structural properties of galaxies with bars, which are the main drivers of secular evolution, can be developed in present state-of-the-art ΛCDM cosmological simulations.