Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Sexual selection influences broad-scale patterns of biodiversity. While a large body of research has investigated the effect of mate competition on sexual selection, less work has examined how pre-adult life history influences sexual selection. We used a mathematical framework to explore the influence of pre-adult survival on sexual selection. Our model suggests that pre-adult male mortality will affect the strength of sexual selection when a fixed number of adult males have an advantageous mate-acquisition trait. When a fixed number of males have an advantageous mate-acquisition trait, sexual selection is expected to increase when pre-adult mortality is relatively low. By contrast, if a fixed proportion (rather than number) of adult males have a mate-acquisition trait, pre-adult male mortality is not expected to affect the strength of sexual selection. Further, if the advantageous mating trait affects pre-adult survival, natural and sexual selection can interact to influence the overall selection on the mating trait. Given that pre-adult mortality is often shaped by natural selection, our results highlight conditions under which natural selection can have cascading effects on sexual selection.