Petascale archives of Earth observations from space (EOS) have the potential to characterise water resources at continental scales. For this data to be useful, it needs to be organised, converted from individual scenes as acquired by multiple sensors, converted into "analysis ready data", and made available through high performance computing platforms. Moreover, converting this data into insights requires integration of non-EOS data-sets that can provide biophysical and climatic context for EOS. Digital Earth Australia has demonstrated its ability to link EOS to rainfall and stream gauge data to provide insight into surface water dynamics during the hydrological extremes of flood and drought. This information is supporting the characterisation of groundwater resources across Australia's north and could potentially be used to gain an understanding of the vulnerability of transport infrastructure to floods in remote, sparsely gauged regions of northern and central Australia.
To comprehensively support national and international initiatives for sustainable development, land cover products need to be reliably and routinely generated within operational frameworks. Coupled with consistent semantics and taxonomies, ensuring confidence in mapping land cover for multiple time periods, facilitates informed decision-making at scales appropriate to multiple policy domains. The United Nations Food and Agriculture Organisation (FAO) Land Cover Classification System (LCCS) provides a taxonomy that comparable at different scales, level of detail and geographic location. The Open Data Cube (ODC) initiative offers a framework for operational continental-scale land cover mapping using analysis-ready Earth Observation data. This study utilised the FAO LCCS framework and the Landsat sensor data through Digital Earth Australia (DEA; Australia's ODC instance) to generate consistent and continent-wide land cover mapping (DEA Land Cover) of the Australian continent. DEA Land Cover provides annual maps from 1988 to 2020 at 25 m resolution. Output maps were validated with ∼12,000 independent validation points, giving an overall map accuracy of 80%. DEA Land Cover provides Australia with a nationally consistent picture of land cover, with an open-source software package using readily available global coverage data and demonstrates a pathway of adoption for national implementations across the world.
Rangeland ecosystems in the western United States are vulnerable to climate change, fire, and anthropogenic disturbances, yet classification of rangeland areas remains difficult due to frequently sparse vegetation canopies that increase the influence of soils and senesced vegetation, the overall abundance of senesced vegetation, heterogeneity of life forms, and limited ground-based data. The Rangeland Condition Monitoring Assessment and Projection (RCMAP) project provides fractional vegetation cover maps across western North America using Landsat imagery and artificial intelligence from 1985 to 2023 at yearly time-steps. The objectives of this case study are to apply hyperspectral data from several new data streams, including Sentinel Synthetic Aperture Radar (SAR) and Earth Surface Mineral Dust Source Investigation (EMIT), to the RCMAP model. We run a series of five tests (Landsat-base model, base + SAR, base + EMIT, base + SAR + EMIT, and base + Landsat NEXT [LNEXT] synthesized from EMIT) over a difficult-to-classify region centered in southwest Montana, USA. Our testing results indicate a clear accuracy benefit of adding SAR and EMIT data to the RCMAP model, with a 7.5% and 29% relative increase in independent accuracy (R2), respectively. The ability of SAR data to observe vegetation height allows for more accurate classification of vegetation types, whereas EMIT’s continuous characterization of the spectral response boosts discriminatory power relative to multispectral data. Our spectral profile analysis reveals the enhanced classification power with EMIT is related to both the improved spectral resolution and representation of the entire domain as compared to legacy Landsat. One key finding is that legacy Landsat bands largely miss portions of the electromagnetic spectrum where separation among important rangeland targets exists, namely in the 900–1250 nm and 1500–1780 nm range. Synthesized LNEXT data include these gaps, but the reduced spectral resolution compared to EMIT results in an intermediate 18% increase in accuracy relative to the base run. Here, we show the promise of enhanced classification accuracy using EMIT data, and to a smaller extent, SAR.
Increased fire activity across the Amazon, Australia, and even the Arctic regions has received wide recognition in the global media in recent years. Large-scale, long-term analyses are required to postulate if these incidents are merely peaks within the natural oscillation, or rather the consequence of a linearly rising trend. While extensive datasets are available to facilitate the investigation of the extent and frequency of wildfires, no means has been available to also study the severity of the burnings on a comparable scale. This is now possible through a dataset recently published by the German Aerospace Center (DLR). This study exploits the possibilities of this new dataset by exemplarily analyzing fire severity trends on the Australian East coast for the past 20 years. The analyzed data is based on 3503 tiles of the ESA Sentinel-3 OLCI instrument, extended by 9612 granules of the NASA MODIS MOD09/MYD09 product. Rising trends in fire severity could be found for the states of New South Wales and Victoria, which could be attributed mainly to developments in the temperate climate zone featuring hot summers without a dry season (Cfa). Within this climate zone, the ecological units featuring needleleaf and evergreen forest are found to be mainly responsible for the increasing trend development. The results show a general, statistically significant shift of fire activity towards the affection of more woody, ecologically valuable vegetation.
This paper presents our research in the pre-launch phase of the Kanyini mission, which aims to implement an energy-efficient, AI-based system onboard for early fire smoke detection using hyperspectral imagery. Our approach includes three key components: developing a diverse hyperspectral training dataset from VIIRS imagery, groundwork in band selection and AI model preparation, and developing an emulation system. We adapted and evaluated our previously developed lightweight convolutional neural network model, VIB_SD, to meet the computational constraints of satellite deployment. The emulation system tests various onboard AI tasks and processes. Our comprehensive experiments demonstrate the feasibility and benefits of employing onboard AI for fire smoke detection, significantly improving downlink efficiency, energy consumption, and detection speed.
Following extreme flooding in eastern Australia in 2011, the Australian Government established a programme to improve access to flood information across Australia. As part of this, a project was undertaken to map the extent of surface water across Australia using the multi-decadal archive of Landsat satellite imagery. A water detection algorithm was used based on a decision tree classifier, and a comparison methodology using a logistic regression. This approach provided an understanding of the confidence in the water observations. The results were used to map the presence of surface water across the entire continent from every observation of 27 years of satellite imagery. The Water Observation from Space (WOfS) product provides insight into the behaviour of surface water across Australia through time, demonstrating where water is persistent, such as in reservoirs, and where it is ephemeral, such as on floodplains during a flood. In addition the WOfS product is useful for studies of wetland extent, aquatic species behaviour, hydrological models, land surface process modelling and groundwater recharge. This paper describes the WOfS methodology and shows how similar time-series analyses of nationally significant environmental variables might be conducted at the continental scale.
Abstract. Hydromorphological attributes such as flow width, water extent, and gradient play an important role in river hydrological, biogeochemical, and ecological processes and can help to predict river conveyance capacity, discharge, and flow routing. While there are some river width datasets at global or regional scales, they do not consider temporal variation in river width and do not cover all Australian rivers. We combined detailed mapping of 1.4 million river reaches across the Australian continent with inundation frequency mapping from 27 years of Landsat observations. From these, the average flow width at different recurrence frequencies was calculated for all reaches, having a combined length of 3.3 million km. A parameter γ was proposed to describe the shape of the frequency–width relationship and can be used to classify reaches by the degree to which flow regime tends towards permanent, frequent, intermittent, or ephemeral. Conventional scaling rules relating river width to gradient and contributing catchment area and discharge were investigated, demonstrating that such rules capture relatively little of the real-world variability. Uncertainties mainly occur in multi-channel reaches and reaches with unconnected water bodies. The calculated reach attributes are easily combined with the river vector data in a GIS, which should be useful for research and practical applications such as water resource management, aquatic habitat enhancement, and river engineering and management. The dataset is available at https://doi.org/10.25914/5c637a7449353 (Hou et al., 2019).
The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations – the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25 m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.