In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (21-36% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.
Abstract Organohalide respiration (OHR), catalysed by reductive dehalogenases (RDases), plays an important role in halogen cycling. Natural organohalides and putative RDase-encoding genes have been reported in Aarhus Bay sediments, however, OHR has not been experimentally verified. Here we show that sediments of Aarhus Bay can dehalogenate a range of organohalides, and different organohalides differentially affected microbial community compositions. PCE-dechlorinating cultures were further examined by 16S rRNA gene-targeted quantitative PCR and amplicon sequencing. Known organohalide-respiring bacteria (OHRB) including Dehalococcoides, Dehalobacter and Desulfitobacterium decreased in abundance during transfers and serial dilutions, suggesting the importance of yet uncharacterized OHRB in these cultures. Switching from PCE to 2,6-DBP led to its complete debromination to phenol in cultures with and without sulfate. 2,6-DBP debrominating cultures differed in microbial composition from PCE-dechlorinating cultures. Desulfobacterota genera recently verified to include OHRB, including Desulfovibrio and Desulfuromusa, were enriched in all microcosms, whereas Halodesulfovibrio was only enriched in cultures without sulfate. Hydrogen and methane were detected in cultures without sulfate. Hydrogen likely served as electron donor for OHR and methanogenesis. This study shows that OHR can occur in marine environments mediated by yet unknown OHRB, suggesting their role in natural halogen cycling.
Abstract In situ chemical oxidation ( ISCO ) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria ( OHRB ), however, is largely lacking. Therefore, we used quantitative PCR ( qPCR ) to monitor the abundance of OHRB ( Dehalococcoides mccartyi , Dehalobacter , Geobacter , and Desulfitobacterium ) and reductive dehalogenase genes ( rdh ; tceA , vcrA , and bvcA ) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene ( PCE ) and trichloroethene ( TCE ) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO . Groundwater acidification ( pH <3) and increase in the oxidation reduction potential (>500 mV ) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO . After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation ( NA ) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.
Summary Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide‐respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles.
Abstract The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain, designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect other organohalide-respiring bacteria. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to 1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate reduction and OHR may confer an advantage to marine Desulfoluna strains.
Prokaryotes in natural environments respond rapidly to high concentrations of chemicals and physical stresses. Exposure to anthropogenic toxic substances-such as oil, chlorinated solvents, or antibiotics-favors the evolution of resistant phenotypes, some of which can use contaminants as an exclusive carbon source or as electron donors and acceptors. Microorganisms similarly adapt to extreme pH, metal, or osmotic stress. The metabolic plasticity of prokaryotes can thus be harnessed for bioremediation and can be exploited in a variety of ways, ranging from stimulated natural attenuation to bioaugmentation and from wastewater treatment to habitat restoration.
Surficial riverbed sediments are often characterized by sharp redox gradients between the aerobic benthic sediment and underlying anoxic sediment, potentially representing an ideal niche for aerobic and anaerobic vinyl chloride (VC) degraders. To test this, the fate of VC in aerobic and anaerobic microcosms containing surficial sediment of a riverbed hyporheic zone receiving VC-contaminated groundwater was explored. Quantitative PCR showed that Dehalococcoides 16S rRNA gene and VC reductive dehalogenase-encoding genes (vcrA, bvcA) were highly enriched in anaerobic microcosms, with stoichiometric conversion of VC to ethene. In aerobic microcosms, etnC and etnE involved in aerobic ethene/VC oxidation were enriched with concomitant low or no accumulation of ethene. However, Dehalococcoides 16S rRNA gene, vcrA and bvcA copy numbers were also enriched in oxygen-exposed microcosms containing sediment with high organic carbon and small grain size, whereas they were reduced in oxygen-exposed sediment with low organic carbon and larger grain size in line with extensive oxygen penetration into the sediment. These results suggest the coexistence and coactivity of anaerobic and aerobic VC degraders in the same small volume of surficial sediment and that oxygen distribution, as determined by sediment grain size and organic matter content, affects the local VC-degrading bacterial community and VC biodegradation pathway.
Bidirectional extracellular electron transfer (EET) is mediated by back and forth electron delivery between microorganisms and extracellular substances. This enables the exchange of biochemical information and energy with the surrounding environments. As a novel bioenergy strategy, bidirectional EET provides low-cost opportunities for the production of clean energy sources and carriers (e.g., hydrogen and methane) as well as the production of value-added chemicals from carbon dioxide. Electrochemically active bacteria (EAB) can also transform pollutants to less toxic or benign substances in contaminated environments, and therefore they have been widely applied in bioremediation studies. Among all the available EAB, Geobacter and Shewanella are well-known for their versatility to accept/donate electrons from/to external environments. In this review, we focus on how these model EAB generate or harvest energy through bidirectional EET, as well as recent advances in the application of EET in bioelectrochemical technology and environmental bioremediation. Finally, the challenges, perspectives and new directions in the bidirectional EET studies are discussed.