The core of detrital zircons from the southern Meiganga gold-bearing placers were analyzed by Laser Ablation Split Stream analytical techniques to determine their trace element abundances and U-Pb ages. The obtained data were used to characterize each grain, determine its formation condition, and try to trace the provenance. The Hf (5980 to 12,010 ppm), Y (27–1650 ppm), U (25–954 ppm), Th (8–674 ppm), Ti (2–256 ppm), Ta, Nb, and Sr (mainly <5 ppm), Th/U (0.06–2.35), Ti zircon temperature (617–1180 °C), ∑REE (total rare earth element) (98–1030 ppm), and Eu/Eu* (0.03 to <1.35) are predominant values for igneous crustal-derived zircons, with very few from mantle sources and of metamorphic origin. Crustal igneous zircons are mainly inherited grains crystallized in granitic magmas (with some charnockitic and tonalitic affinities) and a few from syenitic melts. Mantle zircons were crystallized in trace element depleted mantle source magmatic intrusion during crustal opening. Metamorphic zircons grown in sub-solidus solution in equilibrium with garnet “syn-metamorphic zircons” and in equilibrium with anatectic melts “anatectic zircons” during crustal tectono-metamorphic events. The U-Pb (3671 ± 23–612 ± 11 Ma) ages distinguish: Eoarchean to Neoproterozoic igneous zircons; Neoarchean to Mid Paleoproterozoic anatectic zircons; and Late Neoproterozoic syn-metamorphic grains. The Mesoarchean to Middle Paleoproterozoic igneous zircons are probably inherited from pyroxene-amphibole-bearing gneiss (TTGs composition) and amphibole-biotite gneiss, whose features are similar to those of the granites, granodiorites, TTG, and charnockites found in the Congo Craton, south Cameroon. The youngest igneous zircons could be grains eroded from Pan-African intrusion(s) found locally. Anatectic and syn-metamorphic zircons could have originated from amphibole-biotite gneiss underlying the zircon-gold bearing placers and from locally found migmatized rocks that are from the Cameroon mobile belt, which could be used as proxies for tracking gold.
Copper and associated gold mineralization in the Mundiyawas-Khera area of western India is hosted by the Proterozoic felsic volcanic rocks of rhyo-dacite composition. Signatures of hydrothermal alteration represented by sericite, epidote, scapolite and carbonates are well observed around the ore mineralization zone. The felsic volcanic rocks with gently to flat sloping REE pattern, variable negative Eu anomaly, intermediate abundances of HFSE and moderate to low Zr/Y anomalies are suggested to be FII, FIIIa and FIV type rhyolite. The felsic volcanic host rock for copper mineralization has a depleted and flat HREE pattern and indicates the crustal source, which is garnet free. Negative Eu anomaly in the rock is probably because of the intracrustal partial melting formed in a rift related environment. The high temperature magmatic activities are probably evolved due to the partial melting of crust at shallow to moderate depths, suggesting an evolved continental crust. The δ13C values of the mineralized carbonate veins range between −10.4‰ and −0.9 ‰ (min = −10.6‰, n = 27), whereas the δ18O values show a range of 16.35‰ to 25.23‰ (min = 21.49‰, n = 27), ideally suggesting a mixed source for the ore bearing fluid. Geological, geochemical and stable isotope data of the Mundiyawas-Khera copper deposit suggest it to be a VMS/VHMS setup and these insights will lead to finding new deposits in the nearby areas, having same stratigraphic horizons and similar lithogeochemical assemblages.
Abstract Scapolite occurrences are widely observed in the metasedimentary rocks exposed around the Khetri Copper Belt and adjoining Nim ka Thana copper mineralized area in western India. Amoeboidal to well-developed and rounded/elliptical-shaped marialitic scapolite (Na-rich end-member) rich zones with variable Cl contents ranging from 1.0 wt % to 2.9 wt % have been identified in proximity to the ore-bearing hydrothermal fluid activity zones. Although scapolite is formed as a product of regional metamorphism in many places, in this study, we propose a strong possibility that scapolite was formed by hydrothermal ore-bearing fluid interaction with metasediments. The evidence of hydrothermal activity and Cl sourcing is attributed to (i) the absence of evaporite beds in the area and no Na-rich plagioclase as inclusions within the scapolite suggesting the formation of marialitic scapolite from sodic plagioclase in the metasediments with the interacting hydrothermal fluid; (ii) an epithermal to mesothermal hydrothermal fluid with moderate salinity responsible for the Cu mineralization that is ascribed to be the source of Cl for the formation of marialitic scapolite; (iii) diffusion of SO 2 in the scapolite in close association with the sulfide mineral phase (chalcopyrite) supporting the involvement of ore-bearing fluid in the development of scapolite; (iv) the absence of zoned scapolite, the spatial distribution of scapolite in a particular lithology, the occasional incorporation of sulfur into marialitic scapolite and the texture/geometry in the scapolite suggesting a broad hydrothermal linkage instead of a pure metamorphic origin.
Numerous iron ore deposits are hosted within the Meso to Neo-Archean banded iron formations (BIFs) extending across the Singhbhum-Orissa Craton, eastern India. Despite the widespread distribution of BIFs, which forms part of the iron ore group (IOG), heterogeneity in their grade and mineral composition is occasionally observed even within a single ore deposit. Kiriburu-Meghahatuburu iron ore deposit (KMIOD), west Singhbhum district, Jharkhand, eastern India is characterized by a dominant hematite (often martitized) occurrence with a total resource of >150 million tonnes (MT) at 62.85 wt % Fe. Very high-grade blue dust ore (friable and powdery hematitewith~67% Fe), high-grade massive, hard laminated hematitic ores (~66% Fe) and medium to low grade goethitic/lateritic ores (50%–60% Fe) are the common iron-ore lithologies in KMIOD. These ores can be distinguished in the field from their physical appearance, meso-scale texture and spatial occurrences with the host rocks along with the variation in chemical composition. The high-grade ores are characterized by high Fe (>62 wt %), low Al2O3 (1.5–2.5 wt %), low SiO2 (2.0–4.5 wt %) and low P (<0.06 wt %). Detailed field studies and laboratory investigations on the ore mineral assemblages suggest that the mineralization of high-grade iron ores at KMIOD is controlled by three major parameters, i.e., lithological, paleoclimatic and structural controls. High-grade iron ores such as blue dust seem to be formed during leaching processes through inter-bedded ferruginous shale and banded hematite jasper (BHJ) occurring within BIFs. Structural elements such as folds, joint network, fracture arrays, local faults and steeply dipping bedding planes are surmised as strong controls for the evolution of different iron ore types from the BHJ. Most of the high-grade ores are concentrated at the hinge portions of second generation folds (F2) owing to the easy access for circulation of meteoric solution along the fractures developed due to release of stresses at the hinge portions aided by supergene ore enrichment processes. The BHJ and interbedded ferruginous shale seem to have been given a significant contribution for the formation of different grades of iron ores over the area. Lithologically, the BIFs are governed by rheological features providing channel ways in the ore enrichment process. The variation in the iron ore mineralogy is caused by the variation in depositional and paleoclimatic environment, structural setting and lithological attributes. Hence, these parameters could be used for future exploration and grade recovery of iron ore resources in the region and in the adjoining areas.