Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.
The relative sea-level changes from tide gauges in the Korean peninsula provide essential information to understand the regional and global mean sea-level changes. Several corrections to raw tide gauge records are required to account for coastal vertical land motion (VLM), regional and local coastal variability. However, due to the lack of in-situ measurements such as leveling data and the Global Navigation Satellite System (GNSS), making precise assessments of VLM at the tide gauges is still challenging. This study aims to address the above limitation to assess the VLM in the Korean tide gauges using the time-series Interferometric Synthetic Aperture Radar (InSAR) technique. For 10 tide gauges selected in the Korean peninsula, we applied the Stanford Method for Persistent Scatterers (StaMPS)—Small Baseline Subset (SBAS) method to C-band Sentinel-1 A/B Synthetic Aperture Radar (SAR) data acquired during 2014/10–2020/05, with the novel sequential interferograms pair selection approach to increase the slowly decorrelating filtered phase (SDFP) pixels density near the tide gauges. Our findings show that overall the tide gauges in the Korean peninsula are stable, besides the largest VLM observed at Pohang tide gauge station (East Sea) of about −26.02 mm/year; also, higher rates of uplift (>1 mm/year) were observed along the coast of Yellow Sea (Incheon TG and Boryeong TG) and higher rates of subsidence (<−2 mm/year) were observed at Jeju TG and Seogwipo TG. Our approach estimates the rate of VLM at selected tide gauges with an unprecedented spatial and temporal resolution and is applicable when the in-situ and GNSS observations are not available.