콜롬비아는 안데스 산맥의 북단에 위치하며 NS 방향의 단층대를 기준으로 지질 환경의 차이가 크다. 단층대를 기준으로 동부지역은 원생대 변성암류와 이를 피복하는 고생대 변성퇴적암류가 주로 분포하며, 서부 지역은 고생대 퇴적암류, 중생대 화성암류, 제 3 기 화산양류 및 퇴적암류가 주로 분포한다. 지화학이상대는 6개 그룹으로 분류되며, 철 (Fe), 귀금속(Au, Ag, Pt), 기초금속(Cu, Pb, Zn), 희유금속(Sn, Cr, Co, Mn, Mo, Ni, Nb, W, V, Mg, Ti, Be, REE, Ga, Zr, Hf, Se, Te, Ta, Cd, In, Li 등) 빛 핵원료자원인 U 이상대로 구성된다. 콜롬비아의 주요 부존자원은 석탄, 니켈, 금 및 에메랄드이다. 에메랄드, 석탄 및 니켈은 세계적인 매장규모와 생산량을 보인다. 콜롬비아는 탐사가 거의 수행되지 않은 지역이 전 국토의 49%에 달해 광물부존 잠재성은 현재보다 크게 높을 것으로 보인다. 따라서 최근 콜롬비아와의 광물자원 협력이 강화되고 있는 시점에서 미탐사 지역을 대상한 공동탐사를 지화학 이상대가 확인된 지역을 중심으로 수행하여 신규광체를 확보하고, 광물자원 협력을 강화함으로써 공동개발 여건을 마련할 필요가 있다고 판단된다.
This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources.The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock.Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas.Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte.By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (Ⅰ), basalt (Ⅰ), trachybasalt (Ⅱ), basalt (Ⅱ), trachybasalt (Ⅲ, Ⅳ), trachyte, trachybasalt (Ⅴ, Ⅵ), basalt (Ⅲ), and trachybasalt (Ⅶ, Ⅷ).The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock.Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity.Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area.Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate.Overall, Jeju Island showed better quality as aggregate.In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock.Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition.Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.
The axinite-bearing Gukjeon Pb–Zn deposit is hosted by the limestone, a member of the Jeonggaksan Formation, which, in turn, forms the part of the Jusasan subgroup of the Yucheon Group in the Gyeongsang Basin in the southeastern part of the Korean Peninsula. In this study, we attempted to interpret the spatial and temporal relationships among geologic events, including the mineralization of this deposit. We constructed a new 3D orebody model and suggested a relationship between skarn alteration and related mineralization. Mineralization timing was constrained using SHRIMP zircon age dating results combined with boron geochemistry on coeval intrusive rocks. Skarn alterations are restrictively found in several horizons of the limestone formation. The major skarn minerals are garnet (grossular), pyroxene (hedenbergite), amphibole (actinolite and ferro-actinolite), axinite (tizenite and ferro-axinite), and epidote (clinozoisite and epidote). The three stages of pre-skarn, syn-skarn, and post-skarn alteration are recognized within the deposit. The syn-skarn alteration is characterized by prograde metasomatic pyroxene and garnet, and the retrograde metasomatic amphibole, axinite, and epidote. Major skarn sulfide minerals are sphalerite, chalcopyrite, galena, and pyrite, which were predominantly precipitated during the retrograde stage and formed amphibole and axinite skarns. The skarn orebodies seem to be disc- or flat-shaped with a convex form at the central part of the orebodies. The vertical ascending and horizontal infiltration of boron-rich hydrothermal fluid probably controlled the geometry of the orebodies. Considering the whole-rock major, trace, and boron geochemical and geochronological results, the timing of Pb–Zn mineralization can be tightly constrained between the emplacement of boron-poor intrusion (fine-grained granodiorite, 82.8 Ma) and boron-rich intrusion (porphyritic andesite in Beomdori andesitic rocks, 83.8 Ma) in a back-arc basin setting. The boron for mineralization was sourced from late Cretaceous (Campanian), subduction-related magmatic rocks along the margin of the Pacific plate.