K-feldspar megacrysts (Kfm) are used to investigate the magmatic evolution of the 7 Ma Monte Capanne (MC) monzogranite (Elba, Italy). Dissolution and regrowth of Kfm during magma mixing or mingling events produce indented resorption surfaces associated with high Ba contents. Diffusion calculations demonstrate that Kfm chemical zoning is primary. Core-to-rim variations in Ba, Rb, Sr, Li and P support magma mixing (i.e. high Ba and P and low Rb/Sr at rims), but more complex variations require other mechanisms. In particular, we show that disequilibrium growth (related to variations in diffusion rates in the melt) may have occurred as a result of thermal disturbance following influx of mafic magma in the magma chamber. Initial 87Sr/86Sr ratios (ISr) (obtained by microdrilling) decrease from core to rim. Inner core analyses define a mixing trend extending towards a high ISr–Rb/Sr melt component, whereas the outer cores and rims display a more restricted range of ISr, but a larger range of Rb/Sr. Lower ISr at the rim of one megacryst suggests mixing with high-K calc-alkaline mantle-derived volcanics of similar age on Capraia. Trace element and isotopic profiles suggest (1) early megacryst growth in magmas contaminated by crust and refreshed by high ISr silicic melts (as seen in the inner cores) and (2) later recharge with mafic magmas (as seen in the outer cores) followed by (3) crystal fractionation, with possible interaction with hydrothermal fluids (as seen in the rim). The model is compatible with the field occurrence of mafic enclaves and xenoliths.
Supplementary Datasets for Focused mid-crustal magma intrusion during continental break-up in Ethiopia', including geochemical analyses (standards, secondary standards, and data) Dataset S1: Full dataset of all standards, secondary standards, and data. Dataset S2: High resolution calibrated transmitted and reflected light microscope images of analysed melt inclusions.
The Whakamaru eruption is the largest-volume eruption known to have originated from the hyper-productive Taupo Volcanic Zone, New Zealand. Major, minor and trace element concentrations of plagioclase crystals and cathodoluminescence images, used as a proxy for Ti concentrations in quartz crystals, have been used to explore their chemical zonation. Three plagioclase populations are identified. Group 1 crystals are characterized by inherited cores of composition An45–60, Ba 115–650 ppm and La 3–9 ppm, rims of c. An30, Ba 450–800 ppm and La 7–10 ppm and the presence of a thin overgrowth rim on several crystals cores. Group 2 crystals are oscillatory-zoned plagioclases of composition An30–40, Ba 450–730 ppm and La 8·5–9·5 ppm. Group 3 plagioclase crystals have cores of An25–35 and rims of An20–25 and low Sr contents (280–480 ppm). From the chemical composition of these plagioclase crystals, four physicochemically distinct rhyolitic melts are identified: (1) an andesitic progenitor melt in which the cores of Group 1 crystals crystallized; (2) a greywacke melt or greywacke protolith melt responsible for narrow overgrowth rims on Group 1 crystal cores; (3) melt derived from the rejuvenation of a mature crystal mush body from which Group 3 plagioclase crystals crystallized; (4) a final, rhyolitic melt created by the amalgamation of varying proportions of the andesitic, greywacke-derived and rejuvenated melts with subsequent, open-system fractional crystallization of a plagioclase-dominant crystal assemblage. Cathodoluminescence imaging of quartz crystals reveals complex zonation, the result of a dynamic crystallization history from potentially polygenetic sources. Diffusion modelling of the greyscale intensity of cathodoluminescence images (as a proxy for Ti content) for a selection of bright core–rim interfaces of quartz crystals suggests that renewed quartz growth at the rim zones occurred <300 years (peak likelihood 50–70 years) prior to and continued towards the climactic eruption. This is consistent with timescales of <280 years determined from core–rim interfaces of Group 1 plagioclase crystals, suggesting that the magma chamber was ephemeral, derived from mixing of magmas from multiple sources shortly prior to eruption. This study adds to a growing body of evidence for the ephemeral nature and geologically rapid mixing and mobilization of liquid silicic magma bodies leading to supereruptions, compared with the timescales of hundreds of thousands of years required to accumulate the precursor magma and crystals.
Isotopic fingerprinting has long been used to trace magmatic processes and the components that contribute to magmas. Recent technological improvements have provided an opportunity to analyze isotopic compositions on the scale of individual crystals, and consequently to integrate isotopic and geochemical tracing with textural and petrographic observations. It has now become clear that mineral phases are commonly not in isotopic equilibrium with their host glass/groundmass. Isotopic ratios recorded from core to rim of a mineral grain reflect the progressive changes in the magma composition from which the mineral crystallized. The sense of these changes and the relationship between isotopic composition and petrographic features, such as dissolution surfaces, can be used to constrain magma evolution pathways involving open system processes such as magma mixing, contamination and recharge.
Effective eruption forecasting and volcanic hazard management depend heavily on our ability to detect when a volcanic system switches from a state of unrest into a state of eruption. The 2021 eruption at Fagradalsfjall in SW Iceland, the first deep-sourced eruption on a mid-ocean ridge system monitored with modern instrumentation, presents an ideal opportunity to compare geophysical and petrological datasets to explore processes of deep magma mobilisation and eruption priming. Here we use diffusion chronometry to show that deep magmatic unrest in the roots of volcanic systems can precede apparent geophysical eruption precursors by a few years.  Early phases of magma accumulation and reorganisation in the near-Moho plumbing system, part of the priming for eruption, can occur in the absence of significant increases in shallow seismicity (<7 km depth) or rapid geodetic changes. In contrast, geophysical signals of unrest and crystal records of changing magmatic conditions both show significant increases in intensity in the months and days prior to eruption. This correlation may signal a rapid transition from a state of priming to full scale mobilisation in which magma begins to traverse the upper/ brittle crust. Our findings provide new insights into the dynamics of near-Moho magma storage and mobilisation.