Understanding the relationship between galaxies hosting active galactic nuclei (AGN) and the dark matter halos in which they reside is key to constraining how black-hole fueling is triggered and regulated. Previous efforts have relied on simple halo mass estimates inferred from clustering, weak gravitational lensing, or halo occupation distribution modeling. In practice, these approaches remain uncertain because AGN, no matter how they are identified, potentially live a wide range of halo masses with an occupation function whose general shape and normalization are poorly known. In this work, we show that better constraints can be achieved through a rigorous comparison of the clustering, lensing, and cross-correlation signals of AGN hosts to a fiducial stellar-to-halo mass relation (SHMR) derived for all galaxies. Our technique exploits the fact that the global SHMR can be measured with much higher accuracy than any statistic derived from AGN samples alone. Using 382 moderate luminosity X-ray AGN at z<1 from the COSMOS field, we report the first measurements of weak gravitational lensing from an X-ray selected sample. Comparing this signal to predictions from the global SHMR, we find that, contrary to previous results, most X-ray AGN do not live in medium size groups ---nearly half reside in relatively low mass halos with Mh~10^12.5 Msun. The AGN occupation function is well described by the same form derived for all galaxies but with a lower normalization---the fraction of halos with AGN in our sample is a few percent. By highlighting the relatively "normal" way in which moderate luminosity X-ray AGN hosts occupy halos, our results suggest that the environmental signature of distinct fueling modes for luminous QSOs compared to moderate luminosity X-ray AGN is less obvious than previously claimed.
We present a Special Issue on the interplay of galaxies and Supermassive Black Holes (SMBHs) recently published in Advances in Astronomy. This is the introductory paper containing the motivation for this Special Issue together with a brief description of the articles which are part of the manuscript and the link to the entire book (http://www.hindawi.com/journals/aa/si/610485/). We hope this Special Issue will be useful for many astronomers who want to get an update on the current status of the AGN-Galaxy coevolution topic.
We present high-resolution 345-GHz interferometric observations of two extremely luminous (Lir≳ 1013 L⊙), submillimetre-selected galaxies (SMGs) in the Cosmic Evolution Survey (COSMOS) field with the Submillimeter Array (SMA). Both targets were previously detected as unresolved point sources by the SMA in its compact configuration, also at 345 GHz. These new data, which provide a factor of ≳3 improvement in resolution, allow us to measure the physical scale of the far-infrared in the submillimetre directly. The visibility functions of both targets show significant evidence for structure on ∼0.5–1-arcsec scales, which at z≳ 1.5 translates into a physical scale of ∼5–8 kpc. Our results are consistent with the angular and physical scales of two comparably luminous objects with high-resolution SMA follow-up, as well as radio continuum and CO sizes of other SMGs. These relatively compact sizes (≲5–10 kpc) argue strongly for merger-driven starbursts, rather than extended gas-rich discs, as the preferred channel for forming SMGs.
ABSTRACT We present an improved study of the relation between supermassive black hole growth and their host galaxy properties in the local Universe (z < 0.33). To this end, we build an extensive sample combining spectroscopic measurements of star formation rate (SFR) and stellar mass from Sloan Digital Sky Survey, with specific Black Hole accretion rate (sBHAR, $\lambda _{\mathrm{sBHAR}} \propto L_{\rm X}/\mathcal {M}_{\ast }$) derived from the XMM–Newton Serendipitous Source Catalogue (3XMM–DR8) and the Chandra Source Catalogue (CSC2.0). We find that the sBHAR probability distribution for both star-forming and quiescent galaxies has a power-law shape peaking at log λsBHAR ∼ −3.5 and declining towards lower sBHAR in all stellar mass ranges. This finding confirms the decrease of active galactic nucleus (AGN) activity in the local Universe compared to higher redshifts. We observe a significant correlation between $\log \, \lambda _{\rm sBHAR}$ and $\log \, {\rm SFR}$ in almost all stellar mass ranges, but the relation is shallower compared to higher redshifts, indicating a reduced availability of accreting material in the local Universe. At the same time, the BHAR-to-SFR ratio for star-forming galaxies strongly correlates with stellar mass, supporting the scenario where both AGN activity and stellar formation primarily depend on the stellar mass via fuelling by a common gas reservoir. Conversely, this ratio remains constant for quiescent galaxies, possibly indicating the existence of the different physical mechanisms responsible for AGN fuelling or different accretion mode in quiescent galaxies.
The existence of a large population of Compton thick (CT, $N_{H}>10^{24} cm^{-2}$) AGN is a key ingredient of most Cosmic X-ray background synthesis models. However, direct identification of these sources, especially at high redshift, is difficult due to the flux suppression and complex spectral shape produced by CT obscuration. We explored the Chandra COSMOS Legacy point source catalog, comprising 1855 sources, to select via X-ray spectroscopy, a large sample of CT candidates at high redshift. Adopting a physical model to reproduce the toroidal absorber, and a Monte-Carlo sampling method, we selected 67 individual sources with >5% probability of being CT, in the redshift range $0.0410^{24} cm^{-2}$, gives a total of 41.9 effective CT, corrected for classification bias. We derive number counts in the 2-10 keV band in three redshift bins. The observed logN-logS is consistent with an increase of the intrinsic CT fraction ($f_{CT}$) from $\sim0.30$ to $\sim0.55$ from low to high redshift. When rescaled to a common luminosity (log(L$_{\rm X}$/erg/s)$=44.5$) we find an increase from $f_{CT}=0.19_{-0.06}^{+0.07}$ to $f_{CT}=0.30_{-0.08}^{+0.10}$ and $f_{CT}=0.49_{-0.11}^{+0.12}$ from low to high z. This evolution can be parametrized as $f_{CT}=0.11_{-0.04}^{+0.05}(1+z)^{1.11\pm0.13}$. Thanks to HST-ACS deep imaging, we find that the fraction of CT AGN in mergers/interacting systems increases with luminosity and redshift and is significantly higher than for non-CT AGN hosts.
We define a quasar-galaxy mixing diagram using the slopes of their spectral energy distributions (SEDs) from 1\mu m to 3000\AA\ and from 1\mu m to 3\mu m in the rest frame. The mixing diagram can easily distinguish among quasar-dominated, galaxy-dominated and reddening-dominated SED shapes. By studying the position of the 413 XMM selected Type 1 AGN in the wide-field "Cosmic Evolution Survey" (COSMOS) in the mixing diagram, we find that a combination of the Elvis et al. (1994, hereafter E94) quasar SED with various contributions from galaxy emission and some dust reddening is remarkably effective in describing the SED shape from 0.3-3\mu m for large ranges of redshift, luminosity, black hole mass and Eddington ratio of type 1 AGN. In particular, the location in the mixing diagram of the highest luminosity AGN is very close (within 1\sigma) to that of the E94 SED. The mixing diagram can also be used to estimate the host galaxy fraction and reddening in quasar. We also show examples of some outliers which might be AGN in different evolutionary stages compared to the majority of AGN in the quasar-host galaxy co-evolution cycle.
The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyze the population of faint AGN (L_x (2-10 keV) < 10^42 erg/s) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGN are powered by low-mass BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary populations (XRB) of the simulated galaxies, and find that AGN often dominate the galaxy AGN+XRB hard X-ray luminosity at z>2, while XRBs dominate in some simulations at z<2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modeling tend to overestimate the AGN+XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g., galaxy luminosity drop in massive galaxies), which are not apparent in the observations.