Glacial geomorphological mapping from the southern margin of Skálafellsjökull, southeast Iceland, depicts a topographically diverse mountainside, influencing glacier dynamics, landform formation and glacier retreat since the Little Ice Age maximum in ∼1890. The glacial landforms present are typical of southeast Icelandic temperate glaciers, comprising recessional push moraines, including sawtooth moraines, and associated fluting. Study area A demonstrates an abandoned lobe confined by steep V-shaped topography, displaying moraines and minimal fluting, suggesting low preservation of landforms, and changes in glacier behaviour. At study area B, the sawtooth moraine morphology demonstrates changes in the glacier margin as the ice interacted with a series of topographic benches during active recession. The steep-sided valley at study area C illustrates densely spaced arcuate moraines, reflecting subtle changes in ice elevation. This mapping provides a framework for further investigations into glacier retreat rates and the influence of local topography and climate.
Abstract. This study uses the Soil and Water Assessment Tool (SWAT) model to quantitatively compare available input datasets in a data-poor dryland environment (Wala catchment, Jordan; 1743 km2). Eighteen scenarios combining best available land-use, soil and weather datasets (1979–2002) are considered to construct SWAT models. Data include local observations and global reanalysis data products. Uncalibrated model outputs assess the variability in model performance derived from input data sources only. Model performance against discharge and sediment load data are compared using r2, Nash–Sutcliffe efficiency (NSE), root mean square error standard deviation ratio (RSR) and percent bias (PBIAS). NSE statistic varies from 0.56 to −12 and 0.79 to −85 for best- and poorest-performing scenarios against observed discharge and sediment data respectively. Global weather inputs yield considerable improvements on discontinuous local datasets, whilst local soil inputs perform considerably better than global-scale mapping. The methodology provides a rapid, transparent and transferable approach to aid selection of the most robust suite of input data.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Abstract There is growing recognition of the significance of biologically active supraglacial dust (cryoconite) for glacial mass balance and ecology. Nonetheless, the processes controlling the distribution, transport and fate of cryoconite particles in the glacial system remain somewhat poorly understood. Here, using a 216 hour time series of plot-scale (0.04 m 2 ) images, we quantify the small-scale dynamics of cryoconite on Longyearbreen, Svalbard. We show significant fluctuations in the apparent cryoconite area and dispersion of cryoconite over the plot, within the 9 day period of observations. However, the net movement of cryoconite across the ice surface averaged only 5.3 mm d −1 . High-resolution measurements of cryoconite granule motion showed constant, random motion but weak correlation with meteorological forcing factors and no directional trends for individual particle movement. The high-resolution time-series data suggest that there is no significant net transport of dispersed cryoconite material across glacier surfaces. The areal coverage and motion of particles within and between cryoconite holes appears to be a product of differential melting leading to changes in plot-scale microtopography, local meltwater flow dynamics and weather-dependent events. These subtle processes of cryoconite redistribution may be significant for supraglacial albedo and have bearing on the surface energy balance at the glacier scale.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Abstract Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO 2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14 CO 2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.