The mean velocity distribution of open channel flows with fully submerged two-layered vegetation can be divided into three zones. Zone 1 represents the lower region of short vegetation, where the flow has high drag because of highly dense vegetation, Zone 2 represents the middle flow zone from the edge of the short vegetation to the top of the tall one, and Zone 3 denotes the upper region with the free surface flow. A new analytical model is developed based on the momentum equation of vegetated flow, where turbulent eddy viscosity is approximated as a linear relationship with local velocity. The analytical model was evaluated using seven experimental data sets under different flow conditions with distinctive densities and formations of vegetation. Three sets of data available from other researchers were also used to check the applicability of the proposed model. An agreement between the analytical model and experimental data indicates the validity and robustness of the model.
Abstract In this study, we compare the performances of well injection and pond infiltration in controlling seawater intrusion in an unconfined coastal aquifer through two scenario groups: (1) a single injection well versus an elliptic infiltration pond and (2) an injection‐extraction well pair system versus an elliptic infiltration pond‐extraction well system. Comparison is based on quantitative indicators that include the interface toe location, saltwater volume, and maximum net extraction rate (for scenario 2). We introduce a method to determine the maximum net extraction rate for cases where the locations of stagnation points cannot be easily derived. Analytical analysis shows that the performances of injection and infiltration are the same, provided that the pond shape is circular. The examination of scenario group 1 suggests that the shape of the infiltration pond has a minor effect on the interface toe location as well as the reduction in the saltwater volume, given the same total recharge rate. The investigation of scenario group 2 indicates, by contrast, that the maximum net extraction rate increases significantly with the increasing ratio of b to a , where a and b are semiaxes of the ellipse parallel and perpendicular to the coastline, respectively. Specifically, for a typical aquifer assumed, an increase of 40% is obtained for the maximum net extraction when b/a increases from 1/200 to 200. Despite that the study is based on a simplified model, the results provide initial guidance for practitioners when planning to use an aquifer recharge strategy to restore a salinized unconfined coastal aquifer.
Abstract Freshwater lenses within riparian zones of some arid and semiarid settings assist in maintaining the health of riparian ecosystems. We propose an approach for expanding freshwater lenses in saline aquifers adjacent to gaining rivers through the addition of a vertical barrier of low‐hydraulic‐conductivity (low‐ K ) parallel to the river bank. Sharp‐interface analytical solutions for the lens shape and water table distribution are developed to examine the effectiveness of the proposed method and are verified using sand tank experiments and numerical simulations. The sensitivity analysis is used to apply the method to parameters typical of the Lower River Murray (South Australia) and its floodplain aquifers. The results show that the barrier can create significant freshwater lenses in head‐controlled systems, whereas the barrier may lead to lens shrinkage in flux‐controlled systems due to saline water table rise. That is, the effectiveness of the barrier is highly dependent on the inland boundary condition. The analytical solution presented herein can be used to efficiently predict the riparian freshwater lens extent in response to engineered barriers, adding to existing techniques for studying and modifying riparian freshwater lenses.