Abstract The only martian rock samples on Earth are meteorites ejected from the surface of Mars by asteroid impacts. The locations and geological contexts of the launch sites are currently unknown. Determining the impact locations is essential to unravel the relations between the evolution of the martian interior and its surface. Here we adapt a Crater Detection Algorithm that compile a database of 90 million impact craters, allowing to determine the potential launch position of these meteorites through the observation of secondary crater fields. We show that Tooting and 09-000015 craters, both located in the Tharsis volcanic province, are the most likely source of the depleted shergottites ejected 1.1 million year ago. This implies that a major thermal anomaly deeply rooted in the mantle under Tharsis was active over most of the geological history of the planet, and has sampled a depleted mantle, that has retained until recently geochemical signatures of Mars’ early history.
Abstract On November 27, 2015, at 10:43:45.526 UTC, a fireball was observed across South Australia by 10 Desert Fireball Network observatories lasting 6.1 s. An ~37 kg meteoroid entered the atmosphere with a speed of 13.68 ± 0.09 km s −1 and was observed ablating from a height of 85 km down to 18 km, having slowed to 3.28 ± 0.21 km s −1 . Despite the relatively steep 68.5° trajectory, strong atmospheric winds significantly influenced the darkflight phase and the predicted fall line, but the analysis put the fall site in the center of Kati Thanda–Lake Eyre South. Kati Thanda has meters‐deep mud under its salt‐encrusted surface. Reconnaissance of the area where the meteorite landed from a low‐flying aircraft revealed a 60 cm circular feature in the muddy lake, less than 50 m from the predicted fall line. After a short search, which again employed light aircraft, the meteorite was recovered on December 31, 2015 from a depth of 42 cm. Murrili is the first recovered observed fall by the digital Desert Fireball Network (DFN). In addition to its scientific value, connecting composition to solar system context via orbital data, the recovery demonstrates and validates the capabilities of the DFN, with its next generation remote observatories and automated data reduction pipeline.
Abstract The extent to which solid‐state volume diffusion modifies rare earth element (REE) abundances in accessory minerals during high‐temperature metamorphism governs our ability to link recorded trace‐element compositions to particular thermal events. We model diffusion of REE in zircon under different temperature–time conditions and show that, for both short‐lived (e.g. 1100°C for 1–5 Ma) and more prolonged (e.g. 1050°C for 10–30 Ma or 1000°C for 200 Ma) episodes of ultra‐high‐temperature (UHT) metamorphism, REE diffusion in igneous zircon is sufficiently rapid for REE in a ~50‐μm grain to equilibrate with the new metamorphic mineral assemblage of the host rock. By contrast, unless diffusion is accelerated by recrystallization, the presence of fluids or other processes at temperatures below 900°C zircon will largely retain its original pre‐metamorphic REE abundance pattern, even when the thermal event is long lived (≥100 Ma). Where volume diffusion is dominant, for instance, in the absence of a fluid phase, the sensitivity of REE mobility to temperature can help constrain the temperature–time path of high‐grade metamorphic rocks. Modelling of well‐characterized natural samples from the regional‐scale aureole surrounding the Rogaland Igneous Complex (RIC) in SW Norway shows that variations in REE concentration patterns in zircon indicate a T–t evolution that is consistent with independent P–T–t estimates for regional metamorphism based on phase equilibrium modelling (850–950°C at 7–8 kbar for ~100 Ma). Greater modification of REE abundance patterns in zircons within 2 km of the RIC contact, however, indicates that UHT conditions persisted for ~150 Ma close to the intrusion, with a temperature of ~1100°C for 1–5 Ma at the RIC contact. Thermal modelling suggests that the inferred T–t histories of samples from different distances from the RIC contact are best explained if the complex was emplaced incrementally over 1–5 Ma.
Abstract On June 19, 2020 at 20:05:07 UTC, a fireball lasting was observed above Western Australia by three Desert Fireball Network observatories. The meteoroid entered the atmosphere with a speed of km and followed a ° slope trajectory from a height of 75 km down to 18.6 km. Despite the poor angle of triangulated planes between observatories (29°) and the large distance from the observatories, a well‐constrained kilo‐size main mass was predicted to have fallen just south of Madura in Western Australia. However, the search area was predicted to be large due to the trajectory uncertainties. Fortunately, the rock was rapidly recovered along the access track during a reconnaissance trip. The 1.072 kg meteorite called Madura Cave was classified as an L5 ordinary chondrite. The calculated orbit is of Aten type (mostly contained within the Earth’s orbit), only the second time a meteorite was observed on such an orbit, after Bunburra Rockhole. Dynamical modeling shows that Madura Cave has been in near‐Earth space for a very long time. The dynamical lifetime in near‐Earth space for the progenitor meteoroid is predicted to be ~87 Myr. This peculiar orbit also points to a delivery from the main asteroid belt via the resonance, and therefore an origin in the inner belt. This result contributes to drawing a picture for the existence of a present‐day L chondrite parent body in the inner belt.
Abstract Murrili, the third meteorite recovered by the Desert Fireball Network, is analyzed using mineralogy, oxygen isotopes, bulk chemistry, physical properties, noble gases, and cosmogenic radionuclides. The modal mineralogy, bulk chemistry, magnetic susceptibility, physical properties, and oxygen isotopes of Murrili point to it being an H5 ordinary chondrite. It is heterogeneously shocked (S2–S5), depending on the method used to determine it, although Murrili is not obviously brecciated in texture. Cosmogenic radionuclides yield a cosmic ray exposure age of 6–8 Ma, and a pre‐atmospheric meteoroid size of 15–20 cm in radius. Murrili’s fall and subsequent month‐long embedment into the salt lake Kati Thanda significantly altered the whole rock, evident in its Mössbauer spectra, and visual inspection of cut sections. Murrili may have experienced minor, but subsequent, impacts after its formation 4475.3 ± 2.3 Ma, which left it heterogeneously shocked.
Abstract The entry, descent, and landing (EDL) sequence of NASA's Mars 2020 Perseverance Rover will act as a seismic source of known temporal and spatial localization. We evaluate whether the signals produced by this event will be detectable by the InSight lander (3,452 km away), comparing expected signal amplitudes to noise levels at the instrument. Modeling is undertaken to predict the propagation of the acoustic signal (purely in the atmosphere), the seismoacoustic signal (atmosphere‐to‐ground coupled), and the elastodynamic seismic signal (in the ground only). Our results suggest that the acoustic and seismoacoustic signals, produced by the atmospheric shock wave from the EDL, are unlikely to be detectable due to the pattern of winds in the martian atmosphere and the weak air‐to‐ground coupling, respectively. However, the elastodynamic seismic signal produced by the impact of the spacecraft's cruise balance masses on the surface may be detected by InSight. The upper and lower bounds on predicted ground velocity at InSight are 2.0 × 10 −14 and 1.3 × 10 −10 m s −1 . The upper value is above the noise floor at the time of landing 40% of the time on average. The large range of possible values reflects uncertainties in the current understanding of impact‐generated seismic waves and their subsequent propagation and attenuation through Mars. Uncertainty in the detectability also stems from the indeterminate instrument noise level at the time of this future event. A positive detection would be of enormous value in constraining the seismic properties of Mars, and in improving our understanding of impact‐generated seismic waves.
The current rate of small impacts on Mars is informed by more than one thousand impact sites formed in the last 20 years, detected in images of the martian surface. More than half of these impacts produced a cluster of small craters formed by fragmentation of the meteoroid in the martian atmosphere. The spatial distributions, number and sizes of craters in these clusters provide valuable constraints on the properties of the impacting meteoroid population as well as the meteoroid fragmentation process. In this paper, we use a recently compiled database of crater cluster observations to calibrate a model of meteoroid fragmentation in Mars' atmosphere and constrain key model parameters, including the lift coefficient and fragment separation velocity, as well as meteoroid property distributions. The model distribution of dynamic meteoroid strength that produces the best match to observations has a minimum strength of 10-90 kPa, a maximum strength of 3-6 MPa and a median strength of 0.2-0.5 MPa. An important feature of the model is that individual fragmentation events are able to produce fragments with a wide range of dynamic strengths as much as 10 times stronger or weaker than the parent fragment. The calibrated model suggests that the rate of small impacts on Mars is 1.5-4 times higher than recent observation-based estimates. It also shows how impactor properties relevant to seismic wave generation, such as the total impact momentum, can be inferred from cluster characteristics.