Abstract Seismic hazard modeling is a multidisciplinary science that aims to forecast earthquake occurrence and its resultant ground shaking. Such models consist of a probabilistic framework that quantifies uncertainty across a complex system; typically, this includes at least two model components developed from Earth science: seismic source and ground motion models. Although there is no scientific prescription for the forecast length, the most common probabilistic seismic hazard analyses consider forecasting windows of 30 to 50 years, which are typically an engineering demand for building code purposes. These types of analyses are the topic of this review paper. Although the core methods and assumptions of seismic hazard modeling have largely remained unchanged for more than 50 years, we review the most recent initiatives, which face the difficult task of meeting both the increasingly sophisticated demands of society and keeping pace with advances in scientific understanding. A need for more accurate and spatially precise hazard forecasting must be balanced with increased quantification of uncertainty and new challenges such as moving from time‐independent hazard to forecasts that are time dependent and specific to the time period of interest. Meeting these challenges requires the development of science‐driven models, which integrate all information available, the adoption of proper mathematical frameworks to quantify the different types of uncertainties in the hazard model, and the development of a proper testing phase of the model to quantify its consistency and skill. We review the state of the art of the National Seismic Hazard Modeling and how the most innovative approaches try to address future challenges.
Near-fault ground motion is a key to understanding the seismic hazard along a fault and is challenged by the ground motion prediction equation approach. This paper presents a developed stochastic-slip-scaling source model, a spatial stochastic model with slipped area scaling toward the ground motion simulation. We considered the near-fault ground motion of the 1999 Chi-Chi earthquake in Taiwan, the most massive near-fault disastrous earthquake, proposed by Ma et al. (2001) as a reference for validation. Three scenario source models including the developed stochastic-slip-scaling source model, mean-slip model and characteristic-asperity model were used for the near-fault ground motion examination. We simulated synthetic ground motion through 3D waveforms and validated these simulations using observed data and the ground-motion prediction equation (GMPE) for Taiwan earthquakes. The mean slip and characteristic asperity scenario source models over-predicted the near-fault ground motion. The stochastic-slip-scaling model proposed in this paper is more accurately approximated to the near-fault motion compared with the GMPE and observations. This is the first study to incorporate slipped-area scaling in a stochastic slip model. The proposed model can generate scenario earthquakes for predicting ground motion.
Advances in observational, theoretical and computational technologies have made it possible for automatic, real-time solutions of the focal mechanisms of earthquake point sources. However, for earthquakes of moderate and greater magnitudes, the complexity of the source kinematic processes often requires additional characteristics on the source rupture in order to make seismotectonic inferences and to explain the observed directivity effects of the radiation of seismic energy. We develop an efficient and effective approach to determining the average finite-rupture models of moderate earthquakes by fitting synthetic and recorded broadband waveforms. A Green's tensor database is established using 3-D structural model with surface topography to enable rapid evaluations of accurate synthetic seismograms needed for source parameter inversions without the need for high-performance computing. We take a two-step strategy: In the first step, a point-source model is determined by a grid search for the best fault-plane solution. Then, taking the two nodal planes in the point-source model as candidates of the actual fault plane, a second grid search is carried out over a suite of simplified finite-rupture models to determine the optimal direction and speed of the integrated rupture of the finite source. We applied our method to four moderate events (MW ≈ 6) in southeastern Taiwan. Results show that our technique provides an effective choice in semi-automatic, near real-time determinations of finite-source parameters for earthquake hazard assessment and mitigation purposes.
We investigated 22 broadband teleseismic records of the 1999 Chi-Chi earthquake to determine its temporal and spatial slip distribution.The re sults show an anomalous large slip region centered about 40 to 50 km north of the hypocenter at a shallow depth.The largest amount of slip was about 6 -10 m.The slip near the vicinity of the hypocenter had a relatively smaller amount of slip.The spatial slip distribution pattern coincides well with the observed strong-motion displacement and surface break.In the largest dis location region, the slip was dominated by dip-slip.Some strike-slip com ponent in the middle of the fault was found during the rupture.The South ern portion of the fault showed relatively constant rupture velocity with an average slip of about 1 m, whereas the northern portion of the fault showed significant variations in rupture velocity and produced a large amount of slip.
Abstract. We proposed earthquake forecasting models for Albania, one of the most seismogenic regions in Europe, to give an overview of seismic activity by implementing area source and smoothing approaches. The earthquake catalog was firstly declustered to remove foreshocks and aftershocks when they are within the derived distance- and time-windows of mainshocks. Considering catalog completeness, the events with M≥4.0 during the period of 1960–2006 were implemented for the forecast model learning. The forecasting is implemented into an area source model that includes 20 sub-regions and a smoothing model with a cell size of 0.2° x 0.2° to forecast the seismicity in Albania. Both models show high seismic rate along the western coastline and at the southern part of the study area, consistent with previous studies which discussed seismicity in the area and currently active regions. To further validate the forecast performance from the two models, we introduced the Molchan diagram to quantify the correlation between models and observations. The Molchan diagram suggests that both models are significantly better than a random distribution, confirming their forecasting abilities. Our results provide crucial information for subsequent research on the seismic activity, such as probabilistic seismic hazard assessment.
The Tatun volcano group is located adjacent to the Taipei metropolitan area in northern Taiwan and was a result of episodic volcanisms between 2.8 and 0.2 Ma. Earthquake data collected over the last 30 years are analyzed to explore seismicity patterns and their associated mechanisms of faulting in the area. Using a Joint Hypocenter Determination (JHD) method, a few sequences of relocated earthquake hypocenters are tightly clustered; these seemed to be blurry in the original catalog locations. Numerous earthquakes, previously unnoticed and not reported in the CWB catalog, have been identified from careful examination of the continuous recordings of a nearby broadband seismic station. These newly identified earthquakes show similarities in waveforms and arrival time differences between direct P- and S-waves indicating that their hypocenter locations are very close to each other and their source mechanisms are similar. A relatively high b-value of 1.22 is obtained from the analysis of crustal earthquakes (depth < 30 km) in the region, which may suggest that clustered local seismicity in the Tatun volcanic region probably resulted from subsurface hydrothermal or volcano-related activities. Focal mechanism solutions determined in this study are dominated by normal faulting. Thus, these earthquake clusters are most probably associated with hydrothermal/magmatic activities in a back-arc extensional environment.
ABSTRACT Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (Mw 6–7) and characterize ground-motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the frequency–wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.