We analyse the instrumental seismicity of the Abruzzo region in the period 1981-2003 in order to obtain a catalogue as homogeneous as possible in terms of location procedure and quality of the results. We analyse four temporal datasets: 1981-1991; 1992-1996; 1997-1999 and 2000-2003. The 1981-1991 dataset is taken from the CSTI catalogue, opportunely selected by using quality criteria. The datasets from 1992 to 2003 are relocated by integrating the recordings of the national seismic network with the recordings of the local Abruzzo seismic network (operating from 1992 to 1999). Particular attention is paid to the velocity models, in order to account for the different stratigraphic/tectonic domains which characterize the Abruzzo region. In particular, we used 8 velocity models, applied to stations or groups of stations lying within relatively homogeneous areas. We obtained a database, selected for RMS ≤0.5s and hypocentral errors ≤5 km, of 985 events with 0.5≤M≤4.4 plus two events of moderate magnitude (Mw=5.9, Mw=5.5) corresponding to the largest shocks of the May 1984 Sangro Valley seismic sequence. We also computed 17 new focal mechanisms. The seismotectonic implications mainly concern the thickness of the seismogenic layer. A robust statistical estimate of the base of the seismogenic layer is given by the depth above which the 90% of seismicity occurs (D90). The maximum thickness (15-17 km) is found in the eastern Abruzzo Apennines (surface heat flow ≤40 mW/m2). A thickness of 12-14 km is found in the western Abruzzo Apennines (40< surface heat flow ≤60 mW/m2). The observed depths are consistent with independent rheological data (B-D transition). The connection between the background seismicity and the geometry at depth of the active faults is feasible only rarely (e.g. M. Gorzano normal fault in northern Abruzzo). More often the seismicity is spread within the seismogenic volume. Locally, it concentrates close to structural complexities or defines small seismic sequences activating inherited structures. The active faults south of L'Aquila are almost free from microseismic activity. The new focal mechanisms computed from the 1992-1999 database confirm and reinforce the existence of a dominating extensional regime across the Abruzzo Apennines.
The Apenninic chain, in central Italy, has been recently struck by the Norcia 2016 seismic sequence. Three mainshocks, in 2016, occurred on August 24 (M W 6.0), October 26 (M W 5.9) and October 30 (M W 6.5) along well-known late Quaternary active WSW-dipping normal faults. Coseismic fractures and hypocentral seismicity distribution are mostly associated with failure along the Mt Vettore-Mt Bove (VBF) fault. Nevertheless, following the October 26 shock, the aftershock spatial distribution suggests the activation of a source not previously mapped beyond the northern tip of the VBF system. In this area, a remarkable seismicity rate was observed also during 2017 and 2018, the most energetic event being the April 10, 2018 (M W 4.6) normal fault earthquake. In this paper, we advance the hypothesis that the Norcia seismic sequence activated a previously unknown seismogenic source. We constrain its geometry and seismogenic behavior by exploiting: 1) morphometric analysis of high-resolution topographic data; 2) field geologic- and morphotectonic evidence within the context of long-term deformation constraints; 3) 3D seismological validation of fault activity, and 4) Coulomb stress transfer modeling. Our results support the existence of distributed and subtle deformation along normal fault segments related to an immature structure, the Pievebovigliana fault (PBF). The fault strikes in NNW-SSE direction, dips to SW and is in right-lateral en echelon setting with the VBF system. Its activation has been highlighted by most of the seismicity observed in the sector. The geometry and location are compatible with volumes of enhanced stress identified by Coulomb stress-transfer computations. Its reconstructed length (at least 13 km) is compatible with the occurrence of M W ≥6.0 earthquakes in a sector heretofore characterized by low seismic activity. The evidence for PBF is a new observation associated with the Norcia 2016 seismic sequence and is consistent with the overall tectonic setting of the area. Its existence implies a northward extent of the intra-Apennine extensional domain and should be considered to address seismic hazard assessments in central Italy.
Abstract The systematic study of faults that have released strong earthquakes in the past is a challenge for seismic hazard assessment. In carbonate landscapes, the use of rare earth element (REE) concentrations on slickensides may aid the reconstruction of fault slip history. We applied this methodology to the Caggiano normal fault (Southern Apennines, Italy), cropping out southeast of the Irpinia 1980 CE earthquake fault (Mw 6.9), which was responsible for both the 1561 CE and partly the 1857 CE Basilicata earthquakes (Mw 6.7 and 7.1). We integrated the REE analysis approach with a high-resolution topographic analysis along 98 serial topographic profiles to measure vertical separations attributable to faulting since the Last Glacial Maximum (LGM). The asymmetric scarp height profiles suggest fault-lateral propagation and along-strike variations in the fault evolution. Our results indicate the occurrence of 7 to 11 earthquakes with variable slip between ~40 cm and ~70 cm within post-LGM times. We estimated the magnitudes of the respective earthquakes, between 5.5 and 7.0, and most commonly between 6.3 and 6.5. The results suggest a recurrence time between 1.6 k.y. and 2.3 k.y. and a slip rate ranging between 0.6 mm/yr and 0.9 mm/yr. This approach may be useful for application to carbonate fault planes in similar tectonic contexts worldwide.
Abstract We investigate the L'Aquila 2009 earthquake (AQE, M w 6.3, Italy) through a 3‐D Finite Element (FE) mechanical model based on the exploitation of ENVISAT DInSAR and GPS measurements and an independently generated fault model. The proposed approach mainly consists of (a) the generation of a 3‐D fault model of the active structures involved in the sequence and those neighboring to them, benefiting of a large geological and seismological data set; (b) the implementation of the generated 3‐D fault model in a FE environment, by exploiting the elastic dislocation theory and considering the curved fault geometry and the crustal heterogeneities information; and (c) the optimization of the seismogenic crustal blocks model parameters in order to reproduce the geodetic measurements. We show that our modeling approach allows us to well reproduce the coseismic surface displacements, including their significant asymmetric pattern, as shown by the very good fit between the modeled ground deformations and the geodetic measurements. Moreover, a comparative analysis between our FE model results and those obtained by considering a classical analytical (Okada) model, for both the surface displacements and the Coulomb stress changes, has been performed. Our model permits to investigate the coseismic stress and strain field changes relevant to the investigated volume and their relationships with the surrounding geological structures; moreover, it highlights the very good correlation with the seismicity spatial distribution. The retrieved stress field changes show different maxima: (a) at few kilometers depth, within the main event surface rupture zone; (b) at depths of 5–9 km in correspondence of main event hypocentral area, along the SW dipping Paganica Fault System (PFS); and (c) at depths of 12–14 km, in correspondence of the largest aftershock hypocentral area, along a steep segment of an underlying east dipping basal detachment. Moreover, the main event hypocenter is localized in a region of high‐gradient strain field changes, while a deeper volumetric dilatation lobe involves the largest aftershock zone. From these findings, we argue that the AQE hanging wall downward movement along the steep portion of PFS might have been modulated by the underlying basal detachment; on the other hand, the coseismic eastward motion of the PFS footwall might have triggered further slip on the OS, thus releasing the largest aftershock on an independent source. The retrieved stress and strain field changes, which support the active role of the OS, have been also validated through a comparative analysis with those obtained from independent geological, seismological, and GPS measurements.
Abstract. Thanks to the installation of a temporary seismic network, a microseismicity study has been conducted in the Sulmona area (Abruzzo, Italy) with the aim of increasing the knowledge of seismogenic potential of existing active faults. In this work the first seven months (from 27 May to 31 December 2009) of recorded data have been analysed, over a total period of acquisition of about 30 months. Using a semi-automatic procedure, more than 800 local earthquakes has been detected, which highlight the background seismicity previously unknown. About 70% of these events have been relocated using a 1-D velocity model estimated specifically for the Sulmona area. Phase readings quality is checked and discussed, with respect to weighting schemes used by location algorithms, too. The integration of temporary network data with all the other data available in the region enable us to obtain a statistically more robust dataset of earthquake locations. Both the final hypocentral solutions and phase pickings are released as online Supplement. Local magnitude values of the newly detected events ranges between −1.5 and 3.7 and the completeness magnitude for the Sulmona area during the study period is about 1.1. Duration magnitude coefficients have been estimated as well, for comparison/integration purposes. Local Gutenberg–Richter relationship, estimated from the microseismic data, features low b value, possibly suggesting that the Sulmona area is currently undergoing high stress, in agreement with other recent studies. The time-space distribution of the seismic activity with respect to the known active faults, as well the seismogenic layer thickness, are preliminarily investigated.
We present high-resolution mapping and surface faulting measurements along the Lost River fault (Idaho-USA), a normal fault activated in the 1983 (Mw 6.9) earthquake. The earthquake ruptured ~35 km of the fault with a maximum throw of ~3 m. From new 5 to 30 cm-pixel resolution topography collected by an Unmanned Aerial Vehicle, we produce the most comprehensive dataset of systematically measured vertical separations from ~37 km of fault length activated by the 1983 and prehistoric earthquakes. We provide Digital Elevation Models, orthophotographs, and three tables of: (i) 757 surface rupture traces, (ii) 1295 serial topographic profiles spaced 25 m apart that indicate rupture zone width and (iii) 2053 vertical separation measurements, each with additional textual and numerical fields. Our novel dataset supports advancing scientific knowledge about this fault system, refining scaling laws of intra-continental faults, comparing to other earthquakes to better understand faulting processes, and contributing to global probabilistic hazard approaches. Our methodology can be applied to other fault zones with high-resolution topographic data.
Abstract The deformation style of the continental lithosphere is a relevant issue for geodynamics and seismic hazard perspectives. Here we show the first evidence of two well-distinct low-angle and SW-dipping individual reverse shear zones of the Italian Outer Thrust System in Central Italy. One corresponds to the down-dip prosecution of the Adriatic Basal Thrust with its major splay and the other to a hidden independent structure, illuminated at a depth between 25 and 60 km, for an along-strike extent of ~ 150 km. Combining geological information with high-quality seismological data, we unveil this novel configuration and reconstruct a detailed 3D geometric and kinematic fault model of the compressional system, active at upper crust to upper mantle depths. In addition, we report evidence of coexisting deformation volumes undergoing well-distinguished stress fields at different lithospheric depths. These results provide fundamental constraints for a forthcoming discussion on the Apennine fold-and-thrust system's geodynamic context as a shallow subduction zone or an intra-continental lithosphere shear zone.