Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.
Sensitive ice sheets Why did the Antarctic Ice Sheet begin to grow 34 million years ago, and what does that have to do with us? Galeotti et al. studied a marine sediment core recovered from just off the coast of Antarctica (see the Perspective by Lear and Lunt). The ice sheet did not begin to grow until atmospheric CO 2 concentrations had dropped to below around 600 parts per million. Indeed, the ice sheet was unstable when CO 2 was higher. As modern atmospheric CO 2 concentrations continue their rise, a shift back to an unstable Antarctic Ice Sheet could increase harmful rises in sea level. Science , this issue p. 76 ; see also p. 34
The lowest 501 m (∼1139–638 m) of the AND-2A core from southern McMurdo Sound is the most detailed and complete record of early Miocene sediments in Antarctica and indicates substantial variability in Antarctic ice sheet activity during early Miocene time. There are two main pulses of diamictite accumulation recorded in the core, and three significant intervals with almost no coarse clasts. Each diamictite package comprises several sequences consistent with ice advance-retreat episodes.