The precise position, nature and U-Pb zircon geochronology of the eastern margin of the Tanzania Craton has been studied in the Mpwapwa area, some 60 km east of Dodoma, central Tanzania, in a number of field transects over a ca. 45 km strike length of the craton margin. The rocks to the east of the Tanzania Craton in this area either belong to the Palaeoproterozoic Usagaran belt, or the “Western Granulite” terrane of the Neoproterozoic East African Orogen, according to different authors. The eastern part of the craton is underlain by typical Neoarchaean migmatitic grey granodioritic orthogneisses dated by ICP-MS at 2674 ± 73 Ma. There is a gradual increase in strain eastwards in these rocks, culminating in a 1 to 2 km wide, locally imbricated, ductile thrust/shear zone with mylonites indicating an oblique top-to-the-NW, transpressional sense of movement. East of the craton-edge shear zone, a series of high-grade supracrustal rocks are termed the “Mpwapwa Group”, in view of uncertain age and regional lithostratigraphic correlations. There is an apparent east-west lithological zonation of Mpwapwa Group parallel to the craton margin shear zone. In the west, immediately adjacent to the craton, the group consists of typical “shelf facies” metasediments (marbles, calc-silicates, quartzites etc.). U-Pb dating of detrital zircons from two Mpwapwa Group quartzite samples from this marginal zone contain only Archaean detritus, constraining their maximum depositional age to > ca. 2.6 Ga and suggesting that the group is Neoarchaean in age. The shelf rocks pass eastwards into garnet and kyanite-bearing semi-pelitic gneisses interlayered with bimodal mafic-felsic gneisses, where the mafic amphibolite gneisses may represent meta-basalts and the felsic rocks may have meta-rhyolite, -granite or –psammite protoliths. Massive garnet-clinopyroxene amphibolite layers in the Mpwapwa Group gneisses may have been intrusive mafic sills and possibly correlate with the Palaeoproterozoic Isimani Suite, which outcrops south of the study area and includes 2 Ga eclogites. Zircons from a quartzo-feldsapthic gneiss sample from the bimodal gneisses were dated and showed it to be a probable Neoarchaean rock which underwent metamorphism during the Palaeoproterozoic Usagaran event at ca. 1950 Ma. This event was broadly coeval with subduction, closure of an ocean basin and eclogite formation further south and led to the initial juxtaposition of the two Archaean blocks. The metamorphism probably dates the tectonic event when the Archaean Mpwapwa Group rocks were juxtaposed against the orthogneissic Tanzania Craton. The Mpwapwa Group was intruded by weakly foliated biotite granite at 1871 ± 35 Ma. Zircons in the granite have metamorphic rims dated between 550 and 650 Ma that grew during the East African orogenic event.
Abstract Constraining the continental silicon cycle is a key requirement in attempts to understand both nutrient fluxes to the ocean and linkages between silicon and carbon cycling over different time scales. Silicon isotope data of dissolved silica (δ 30 Si DSi ) are presented here from Lake Baikal and its catchment in central Siberia. As well as being the world's oldest and voluminous lake, Lake Baikal lies within the seventh largest drainage basin in the world and exports significant amounts of freshwater into the Arctic Ocean. Data from river waters accounting for ~92% of annual river inflow to the lake suggest no seasonal alteration or anthropogenic impact on river δ 30 Si DSi composition. The absence of a change in δ 30 Si DSi within the Selenga Delta, through which 62% of riverine flow passes, suggests a net balance between biogenic uptake and dissolution in this system. A key feature of this study is the use of δ 30 Si DSi to examine seasonal and spatial variations in DSi utilization and export across the lake. Using an open system model against deepwater δ 30 Si DSi values from the lake, we estimate that 20–24% of DSi entering Lake Baikal is exported into the sediment record. While highlighting the impact that lakes may have upon the sequestration of continental DSi, mixed layer δ 30 Si DSi values from 2003 and 2013 show significant spatial variability in the magnitude of spring bloom nutrient utilization with lower rates in the north relative to south basin.
Geochemical and geochronological analyses provide quantitative evidence about the origin, development and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia convergence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c . 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an ϵ Nd(0) signature of −18.3 to −12.1, and is intruded by c . 800 Ma and c . 500–600 Ma granites. In contrast, the footwall has a prominent detrital zircon peak at c . 1800–1900 Ma, with older populations spanning 1900–3600 Ma, and an ϵ Nd(0) signature of −27.7 to −23.4, intruded by c . 1830 Ma granites. The data reveal a c . 5 km thick zone of tectonic imbrication, where isotopically out-of-sequence packages are interleaved. The rocks became imbricated as the once proximal and distal rocks of the Indian margin were juxtaposed by Cenozoic movement along the Main Central Thrust. Geochronological and isotopic characterization allows for correlation along the Himalayan orogen and could be applied to other cryptic ductile shear zones. Supplementary material: Zircon U–Pb geochronological data, whole-rock Sm–Nd isotopic data, sample locations, photomicrographs of sample thin sections, zircon CL images, and detailed analytical conditions are available at www.geolsoc.org.uk/SUP18704 .
Abstract Eight ferromanganese crust samples spanning the complete depth range of Tropic Seamount in the northeast Atlantic were analyzed for Pb and Nd isotopes to reconstruct water mass origin and mixing over the last 75 Ma. Pb isotopes were determined by laser ablation multicollector inductively coupled plasma mass spectrometer (LA‐MC‐ICP‐MS), which enables the rapid production of large, high spatial resolution data sets. This makes it possible to precisely correlate stratigraphy between different samples, compare contemporaneous layers, and create a composite record given the abundance of hiatuses in crusts. Pb and Nd isotope data show the influence of various oceanic and continental end‐members in the northeast Atlantic Ocean. This reflects its evolution from a restricted, isolated basins in the Late Cretaceous with influxes from the Tethys Ocean, to an increasingly well‐mixed, large‐scale basin, with a dominant Southern Ocean signature until the Miocene. Less radiogenic Nd isotope signatures suggest Labrador Sea Water influenced the northeast Atlantic basin as early as 17–15 Ma, flowing through a northern route such as the Charlie‐Gibbs Fracture Zone. Pb and Nd isotopes highlight the increasing influence of Saharan eolian dust input about 7 Ma, imparting a less radiogenic excursion to the binary mixing between North Atlantic water masses and riverine discharge from West and Central Africa. This highlights the influence of eolian dust input on the open ocean Pb and Nd budget and supports an early stage of North African aridification in the Late Miocene. This signature is overprinted about 3 Ma to the present by a strong North Atlantic Deep Water signature following the onset of Northern Hemisphere glaciation.