Changes in soil moisture strongly affect vegetation growth, which may in turn feed back on soil moisture by directly affecting evapotranspiration and indirectly regulating precipitation. Previous studies often focused on the unidirectional effects of soil moisture on temporal vegetation dynamics, yet bidirectional dependencies have rarely been studied. Here we analyzed the bidirectional dependency between soil moisture and vegetation productivity during 2001–2020 at a global scale using the Granger causality, and revealed strong concurrent and lagged correlations between both variables in large areas globally. Bidirectional causality between soil moisture and vegetation productivity was identified over 66% of the vegetated land areas, while considering lagged effects and controlling for temperature and solar radiation. Unidirectional effects of vegetation productivity on soil moisture, and soil moisture on vegetation productivity, were observed for 22% and 12% of vegetated land areas, respectively. For areas characterized by uni- and bidirectional dependencies, 74% of the vegetation productivity and 48% of soil moisture could be explained by optimum lag models. Finally, we observed increases in both vegetation productivity and soil moisture in 44% of the vegetated land areas, yet 36% showed an increase in vegetation productivity but a decrease in soil moisture, indicating divergent responses between greening and water availability. Identification of areas showing Granger causality between soil moisture and vegetation productivity is important for our understanding of carbon-water interactions for terrestrial ecosystems under climate change and for improving sustainable management of ecosystem services linked to the carbon-water cycle.
Abstract Rapid population growth in West Africa has exerted increasing pressures on land resources, leading to observable changes in the land cover and land use. However, spatially explicit and thematically detailed quantitative analyses of land cover change over long time periods and at regional scale have been lacking. Here we present a change intensity analysis of a Landsat-based, visually interpreted, multi-date (1975, 2000, 2013) land cover dataset of West Africa, stratified into five bioclimatic sub-regions. Change intensities accelerated over time and increased from the arid to the sub-humid sub-regions, as did population densities. The area occupied by human-dominated land cover categories more than doubled from 493,000 km 2 in 1975 to 1,121,000 km 2 in 2013. Land cover change intensities within 10 km of new settlement locations exceeded the region-wide average by up to a factor of three, substantiating the significant role of population pressure as a force of change. The spatial patterns of the human footprint in West Africa, however, suggest that not only population pressure but also changing socioeconomic conditions and policies shape the complexity of land cover outcomes.
Abstract Vapor pressure deficit (VPD) is of great importance to control the land‐atmosphere exchange of water and CO 2 . Here we use in situ observations to assess the performance of monthly VPD calculated from state‐of‐the‐art data sets including CRU, ERA5, and Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA2). We investigate trends in VPD at global scale and for different climatic zones for 1981–2020 and future trends (2021–2100) from Coupled Model Inter‐comparison Project phase 6 (CMIP6) outputs. The results show that monthly VPD estimated from CRU, ERA5, and MERRA2 correlated well against in situ estimates from 15,531 World Meteorological Organization stations, with R 2 ranging between 0.92 and 0.96. Moreover, robust correlations were also found across in situ stations and when analyzing different months separately. During 1981–2020, VPD increased in all climatic zones, with the strongest increase in the arid zone, followed by tropical, temperate, cold and polar zones. CMIP6 simulations show a continuously increasing trend in VPD (0.028 hPa year −1 ), with the largest increase in the arid zone (0.063 hPa year −1 ). The magnitudes of trends are found to increase following the magnitude of CO 2 increases in the future emission scenarios. We highlight that atmospheric aridification will continue under global warming, which may pose an increasing threat to terrestrial ecosystems and particularly dryland agricultural systems.
Increasing aridity is one major consequence of ongoing global climate change and is expected to cause widespread changes in key ecosystem attributes, functions, and dynamics. This is especially the case in naturally vulnerable ecosystems, such as drylands. While we have an overall understanding of past aridity trends, the linkage between temporal dynamics in aridity and dryland ecosystem responses remain largely unknown. Here, we examined recent trends in aridity over the past two decades within global drylands as a basis for exploring the response of ecosystem state variables associated with land and atmosphere processes (e.g., vegetation cover, vegetation functioning, soil water availability, land cover, burned area, and vapor-pressure deficit) to these trends. We identified five clusters, characterizing spatiotemporal patterns in aridity between 2000 and 2020. Overall, we observe that 44.5% of all areas are getting dryer, 31.6% getting wetter, and 23.8% have no trends in aridity. Our results show strongest correlations between trends in ecosystem state variables and aridity in clusters with increasing aridity, which matches expectations of systemic acclimatization of the ecosystem to a reduction in water availability/water stress. Trends in vegetation (expressed by leaf area index [LAI]) are affected differently by potential driving factors (e.g., environmental, and climatic factors, soil properties, and population density) in areas experiencing water-related stress as compared to areas not exposed to water-related stress. Canopy height for example, has a positive impact on trends in LAI when the system is stressed but does not impact the trends in non-stressed systems. Conversely, opposite relationships were found for soil parameters such as root-zone water storage capacity and organic carbon density. How potential driving factors impact dryland vegetation differently depending on water-related stress (or no stress) is important, for example within management strategies to maintain and restore dryland vegetation.
ABSTRACT To improve our knowledge of glacier area changes in the central Chilean and Argentinean Andes (32°9′S–33°4′S), two new glacier inventories from 1989 to 2013/14 are compared with a reinterpreted inventory from 1955. Comparisons show glacier area retreat of 30 ± 3% since 1955, decreasing from 134 to 94 km 2 in 2013/14, whilst the annual rate of area loss showed a small increase (insignificant) between the periods of 1955–1989 and 1989–2013/14. Separate analysis of the 1989 and 2013/14 inventories, including a larger sample, revealed a higher rate of glacier change compared with the smaller samples of these inventories. Additionally, an analysis at ~5 year intervals for six major glaciers (1955–2013) indicates large variability in response times and area loss magnitudes. Glacier Olivares Alfa, for example, lost 63% of its ice area, while the Juncal Norte Glacier lost only 10% (1955–2013). The findings from this study improve our current knowledge base concerning widespread glacier decline in the southern Andes, and furthers monitoring efforts in this poorly described region of the world, a region containing vital water resources for populated areas in South America.
Abstract. This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ-based multi-angular data set of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral HCRF and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A band at 761 nm used for estimating chlorophyll fluorescence (GPP and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the strongest correlation to (i) biomass combined red-edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436), and (iv) FAPAR combined blue (ρ399) and near-infrared (ρ1295) wavelengths. NDSIs combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.