Abstract TNF-like ligand 1 A (TL1A) and death receptor 3 (DR3) are a ligand-receptor pair involved in the pathogenesis of inflammatory bowel disease. Group 3 innate lymphoid cells (ILC3s) regulate intestinal immunity and highly express DR3. Here, we report that activation of DR3 signaling by an agonistic anti-DR3 antibody increases GM-CSF production from ILC3s through the p38 MAPK pathway. GM-CSF causes accumulation of eosinophils, neutrophils and CD11b + CD11c + myeloid cells, resulting in loss of ILC3s from the intestine in an IL-23-dependent manner and exacerbating colitis. Blockade of GM-CSF or IL-23 reverses anti-DR3 antibody-driven ILC3 loss, whereas overexpression of IL-23 induces loss of ILC3s in the absence of GM-CSF. Neutralization of TL1A by soluble DR3 ameliorates both DSS and anti-CD40 antibody-induced colitis. Moreover, ILC3s are required for the deleterious effect of anti-DR3 antibodies on innate colitis. These findings clarify the process and consequences of DR3 signaling-induced intestinal inflammation through regulation of ILC3s.
Treg cells acquire distinct transcriptional properties to suppress specific inflammatory responses. Transcription characteristics of Treg cells are regulated by epigenetic modifications, the mechanism of which remains obscure. Here, we report that Setd2, a histone H3K36 methyltransferase, is important for the survival and suppressive function of Treg cells, especially those from the intestine. Setd2 supports GATA3+ST2+ intestinal thymic-derived Treg (tTreg) cells by facilitating the expression and reciprocal relationship of GATA3 and ST2 in tTreg cells. IL-33 preferentially boosts Th2 cells rather than GATA3+ Treg cells in Foxp3Cre-YFPSetd2 flox/flox mice, corroborating the constraint of Th2 responses by Setd2 expression in Treg cells. SETD2 sustains GATA3 expression in human Treg cells, and SETD2 expression is increased in Treg cells from human colorectal cancer tissues. Epigenetically, Setd2 regulates the transcription of target genes (including Il1rl1) by modulating the activity of promoters and intragenic enhancers where H3K36me3 is typically deposited. Our findings provide mechanistic insights into the regulation of Treg cells and intestinal immunity by Setd2.
A highly sensitive time-resolved fluoroimmunoassay (TRFIA) was developed to quantify serum antibodies against the phospholipase A2 receptor (anti-PLA2R-IgG) for differential diagnosis of membranous nephropathy. Recombinant PLA2R (rPLA2R) was coated onto 96-well plates as a capture. A goat-anti-human IgG tracer was prepared with europium-chelate for detection. After bound/free separation by washing, the fluorescence counts of bound tracer were measured for quantifying serum anti-PLA2R-IgG concentration. A purified anti-PLA2R-IgG calibrator was first prepared for ensuring that consistent quantitative results could be obtained. The assay detection limit was 0.03 mg/L with linear measurement range of 0.03-340 mg/L. The intra- and inter-assay coefficients of variation (CVs) were 3.8% and 6.2%, respectively. The average serum anti-PLA2R-IgG concentration in 45 healthy volunteers, 31 IgA nephropathy, 9 lupus nephropathy, and 52 idiopathic membranous nephropathy patients was 0.53 ± 0.18 mg/L, 0.70 ± 0.41 mg/L, 1.08 ± 0.65 mg/L, and 9.00 ± 11.82 mg/L, respectively. The cut-off point for an abnormal anti-PLA2R-IgG concentration was defined as >0.89 mg/L. The positive rates in serum from patients with IgA nephropathy, lupus nephropathy, and idiopathic membranous nephropathy were 29.0%, 44.4%, and 88.5%, respectively. The availability of this quantitation method will facilitate the use of serum anti-PLA2R-IgG for diagnosing idiopathic membranous nephropathy.
Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here we present a new methodology to simulate inflammatory disease manifestation and test potential intervention strategies in silico using agent-based computational models. Simulations created using this methodology have explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or resolution. The technology described is a powerful new method to understand cellular behaviours in complex inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the role of TCR signalling in autoimmune disease progression.
The image for Fig 4C is incorrect. Please see the complete, corrected Fig 4 here.
Fig 4
Effector T cell and clinical disease dynamics given anti-CD3 intervention at day 4.
Whether vitamin D3 (VD3) supplementation is associated with improved liver fibrosis is controversial.Liver fibrosis models were treated with VD3, active VD (1,25-OH2 Vitamin D3), or collaboration with GSK126 (Ezh2 inhibitor), respectively. Hepatic stellate cells (HSCs) were co-cultured with hepatocytes and then stimulated with TGF-β. Autophagy of hepatocytes was determined after the intervention of 1,25-OH2 Vitamin D3 and GSK126. Also, the active status of HSCs and the mechanism with 1,25-OH2 Vitamin D3 and GSK126 intervention were detected.1,25-OH2 Vitamin D3, but not VD3, is involved in anti-fibrosis and partially improves liver function, which might be associated with related enzymes and receptors (especially CYP2R1), leading to decreased of its biotransformation. GSK126 plays a synergistic role in anti-fibrosis. The co-culture system showed increased hepatocyte autophagy after HSCs activation. Supplementation with 1,25-OH2 Vitamin D3 or combined GSK126 reduced these effects. Further studies showed that 1,25-OH2 Vitamin D3 promoted H3K27 methylation of DKK1 promoter through VDR/Ezh2 due to the weakening for HSCs inhibitory signal.VD3 bioactive form 1,25-OH2 Vitamin D3 is responsible for the anti-fibrosis, which might have bidirectional effects on HSCs by regulating histone modification. The inhibitor of Ezh2 plays a synergistic role in this process.
Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients' AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients.
Background M-type phospholipase A2 receptor (PLA2R) is the major autoantigen in adult idiopathic membranous nephropathy (IMN). Although reactive epitopes in the PLA2R domains have been identified, the clinical value of these domains recognized by anti-PLA2R antibodies remains controversial. Accordingly, this study aimed to quantitatively detect changes in the concentrations of different antibodies against epitopes of PLA2R in patients with IMN before and after treatment to evaluate the clinical value of epitope spreading. Methods Highly sensitive time-resolved fluorescence immunoassay was used to quantitatively analyze the concentrations of specific IgG and IgG4 antibodies against PLA2R and its epitopes (CysR, CTLD1, CTLD6-7-8) in a cohort of 25 patients with PLA2R-associated membranous nephropathy (13 and 12 in the remission and non-remission groups, respectively) before and after treatment, and the results were analyzed in conjunction with clinical biochemical indicators. Results The concentration of specific IgG (IgG4) antibodies against PLA2R and its epitopes (CysR, CTLD1 and CTLD6-7-8) in non-remission group was higher than that in remission group. The multipliers of elevation of IgG (IgG4) antibody were 5.6(6.2) fold, 3.0(24.3) fold, 1.6(9.0) fold, and 4.2(2.6) fold in the non-remission/remission group, respectively. However, the difference in antibody concentrations between the two groups at the end of follow-up was 5.6 (85.2), 1.7 (13.1), 1.0 (5.1), and 1.5 (22.3) times higher, respectively. When detecting concentrations of specific IgG antibodies against PLA2R and its different epitopes, the remission rate was 66.67% for only one epitope at M0 and 36.36% for three epitopes at M0. When detecting concentrations of specific IgG4 antibodies against PLA2R and its different epitopes, the remission rate was 100.00% for only one epitope at M0 and 50.00% for three epitopes at M0. A trivariate logistic regression model for the combined detection of eGFR, anti-CTLD678 IgG4, and urinary protein had an AUC of 100.00%. Conclusion Low concentrations of anti-CysR-IgG4, anti-CTLD1-IgG4, and anti-CTLD6-7-8-IgG4 at initial diagnosis predict rapid remission after treatment. The use of specific IgG4 against PLA2R and its different epitopes combined with eGFR and urinary protein provides a better assessment of the prognostic outcome of IMN.
Abstract This study aimed to compare the performance of the BD FACSPresto system with the conventional standard-of-care technologies for the measurement of absolute CD4 count (AbsCD4), CD4 percentage (CD4%) and total hemoglobin concentration (Hb) in capillary and venous blood samples of HIV-negative and HIV-positive subjects. A total of 1304 participants were included in this prospective cohort study. Both venous and capillary blood samples were analyzed using the BD FACSPresto system and the results were compared against the BD FACSCalibur for enumerating AbsCD4 and CD4% and Sysmex XT-4000i hematology analyzer for determining Hb levels. Method comparison studies were performed using Deming regression and Bland–Altman plots. The Deming regression analyses comparing the accuracy of the BD FACSPresto system with the reference standard technologies demonstrated a significant linear correlation between the AbsCD4, CD4%, and Hb values generated by the two platforms. The 95% CI of the slopes for AbsCD4, CD4%, and Hb levels were 0.94–0.99, 0.99–1.01 and 0.86–0.93, respectively ( P < 0.001). Bland–Altman plots for AbsCD4, CD4%, and Hb levels demonstrated close agreement between the BD FACSPresto system and the reference standards for all study participants. The performance and accuracy of BD FACSPresto system was comparable to the reference standard technologies. The BD FACSPresto system can be used interchangeably with BD FACSCalibur platform for CD4 and Sysmex XT-4000i hematology analyzer for Hb concentrations in resource-limited settings thus, improving accessibility to point-of-care testing services.