Terahertz (THz) radiation is a valuable imaging and sensing tool which is widely used in industry and medicine. However, it biological effects including genotoxicity and cytotoxicity are lacking of research, particularly on the nervous system. In this study, we investigated how terahertz radiation with 10mW (0.12 THz) and 50 mW (0.157 THz) would affect the morphology, cell growth and function of rat hippocampal neurons in vitro.
Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer's disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50Hz 400µT 60d) combined with D-galactose intraperitoneal (50mg/kg, q.d., 42d) and Aβ25–35 hippocampal (5μl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.
Background Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). Methods Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. Results In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. Conclusion p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was induced by microwave exposure.
Abstract Microwave (MW) and electromagnetic pulse (EMP) are considered environmental pollutants, both of which can induce learning and memory impairments. However, the bioeffects of combined exposure to MW and EMP have never been explored. This paper aimed to investigate the effects of combined exposure to MW and EMP on the learning and memory of rats as well as its association with ferroptosis in the hippocampus. In this study, rats were exposed to EMP, MW, or EMP and MW combined radiation. After exposure, impairment of learning and memory, alterations in brain electrophysiological activity, and damage to hippocampal neurons were observed in rats. Moreover, we also found alterations in ferroptosis hallmarks, including increased levels of iron, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, as well as downregulation of glutathione peroxidase 4 (GPX4) protein in the rat hippocampus after exposure. Our results suggested that either single or combined exposure to MW and EMP radiation could impair learning and memory and damage hippocampal neurons in rats. Moreover, the adverse effects caused by the combined exposure were more severe than the single exposures, which might be due to cumulative effects rather than synergistic effects. Furthermore, ferroptosis in the hippocampus might be a common underlying mechanism of learning and memory impairment induced by both single and combined MW and EMP exposure.
Microwave ablation can produce immune activation due to thermal effects. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In this study, we sequentially exposed rats to 1.5 GHz microwave for 6 min and 2.8 GHz microwave for 6 min at an average power density of 5, 10, and 30 mW/cm2. The structure of the thymus, spleen, and mesenteric lymph node were observed, and we showed that multifrequency microwave exposure caused tissue injuries, such as congestion and nuclear fragmentation in lymphocytes. Ultrastructural injuries, including mitochondrial swelling, mitochondrial cristae rupture, and mitochondrial cavitation, were observed, especially in the 30 mW/cm2 microwave-exposed group. Generally, multifrequency microwaves decreased white blood cells, as well as lymphocytes, monocytes, and neutrophils, in peripheral blood, from 7 d to 28 d after exposure. Microwaves with an average density of 30 mW/cm2 produced much more significant inhibitory effects on immune cells. Moreover, multifrequency microwaves at 10 and 30 mW/cm2, but not 5 mW/cm2, reduced the serum levels of several cytokines, such as interleukin-1 alpha (IL-1α), IL-1β, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), at 7 d and 14 d after exposure. We also found similar alterations in immunoglobulins (Igs), IgG, and IgM in serum. However, no obvious changes in complement proteins were detected. In conclusion, multifrequency microwave exposure of 1.5 GHz and 2.8 GHz caused both structural injuries of immune tissues and functional impairment in immune cells. Therefore, it will be necessary to develop an effective strategy to protect people from multifrequency microwave-induced immune suppression.
Abstract This study aimed to evaluate the acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory and cAMP response element binding (CREB)-related pathways. A total of 120 male Wistar rats were divided into four groups: a control group (C); 2.856 GHz microwave exposure group (S group); 1.5 GHz microwave exposure group (L group); and 2.856 and 1.5 GHz cumulative exposure group (SL group). Decreases in spatial memory abilities, changes in EEG, structural injuries, and the downregulation of phosphorylated-Ak strain transforming (p-AKT), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signal regulated kinase (p-ERK) and p-CREB was observed 6 h after microwave exposure. Significant differences in the expression of p-CaMKII were found between the S and L groups. The power amplitudes of the EEG waves (θ, δ), levels of structural injuries and the expression of p-AKT, p-CaMK II, p-CREB, and p-ERK1/2 were significantly different in the S and L groups compared to the SL group. Interaction effects between the 2.856 and 1.5 GHz microwaves were found in the EEG and p-CREB changes. Our findings indicated that 2.856 GHz and 1.5 GHz microwave exposure induced a decline in spatial memory, which might be related to p-AKT, p-CaMK II, p-CREB and p-ERK1/2.
This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group) and simultaneous 1.5 and 4.3 GHz microwave exposure (LC group) groups. Spatial learning and memory, cortical electrical activity, and hippocampal ultrastructure were assessed by the Morris Water Maze, electroencephalography, and transmission electron microscopy, respectively. Additionally, serum exosomes were isolated by ultracentrifugation and assessed by Western blotting, nanoparticle tracking and transmission electron microscopy. The serum exosome protein content was assessed by label-free quantitative proteomics. Impaired spatial learning and memory decreased cortical excitability, and damage to the hippocampal ultrastructure were observed in groups exposed to microwaves, especially the L and LC groups. A total of 54, 145 and 296 exosomal proteins were differentially expressed between the S group and the L, C and LC groups, respectively. These differentially expressed proteins were involved in the synaptic vesicle cycle and SNARE interactions during vesicular transport. Additionally, VAMP8, Syn7 and VMAT are potential serum markers of simultaneous microwave exposure. Thus, exposure to 1.5 and 4.3 GHz microwaves induced impairments in spatial learning and memory, and simultaneous microwave exposure had the most severe effects.