We report the discovery of WTS-2 b, an unusually close-in 1.02-day hot Jupiter (Mp=1.12MJ, Rp=1.363RJ) orbiting a K2V star, which has a possible gravitationally-bound M-dwarf companion at 0.6 arcsec separation contributing ~20 percent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ~40 Myr, assuming a tidal dissipation quality factor of Q'*=10^6. Q'* is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of T_shift~17 seconds after 15 years assuming Q'*=10^6. A shift less than this would place a direct observational constraint on the lower limit of Q'* in this system. We also report a correction to the previously published expected T_shift for WASP-18 b, finding that T_shift=356 seconds after 10 years for Q'*=10^6, which is much larger than the estimated 28 seconds quoted in WASP-18 b discovery paper. We attempted to constrain Q'* via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straight-forward constraints on Q'* will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.
We have examined the Mg—σ relation for early-type galaxies in the EFAR sample and its dependence on cluster properties. A comprehensive maximum likelihood treatment of the sample selection and measurement errors gives fits to the global Mg—σ relation of Mg b′=0.131 log σ −0.131 and Mg2=0.257 log σ −0.305. The slope of these relations is 25 per cent steeper than that obtained by most other authors owing to the reduced bias of our fitting method. The intrinsic scatter in the global Mg— σ relation is estimated to be 0.016 mag in Mg b′ and 0.023 mag in Mg2. The Mg— σ relation for cD galaxies has a higher zero-point than for E and S0 galaxies, implying that cDs are older and/or more metal-rich than other early-type galaxies with the same velocity dispersion. We investigate the variation in the zero-point of the Mg— σ relation between clusters. We find that it is consistent with the number of galaxies observed per cluster and the intrinsic scatter between galaxies in the global Mg—σ relation. We find no significant correlation between the Mg—σ zero-point and the cluster velocity dispersion, X-ray luminosity or X-ray temperature over a wide range in cluster mass. These results provide constraints for models of the formation of elliptical galaxies. However, the Mg—σ relation on its own does not place strong limits on systematic errors in Fundamental Plane (FP) distance estimates resulting from stellar population differences between clusters. We compare the intrinsic scatter in the Mg—σ and Fundamental Plane relations with stellar population models in order to constrain the dispersion in ages, metallicities and M/L ratios for early-type galaxies at fixed velocity dispersion. We find that variations in age or metallicity alone cannot explain the measured intrinsic scatter in both Mg— σ and the FP. We derive the joint constraints on the dispersion in age and metallicity implied by the scatter in the Mg—σ and FP relations for a simple Gaussian model. We find upper limits on the dispersions in age and metallicity at fixed velocity dispersion of 32 per cent in δ t/t and 38 per cent in δ Z/Z if the variations in age and metallicity are uncorrelated; only strongly anticorrelated variations lead to significantly higher upper limits. The joint distribution of residuals from the Mg— σ and FP relations is only marginally consistent with a model having no correlation between age and metallicity, and is better matched by a model in which age and metallicity variations are moderately anticorrelated (δ t/t ≈ 40 per cent, δ Z/Z ≈ 50 per cent and ρ≈ −0.5), with younger galaxies being more metal-rich.
The Manfred Hirt Planet Spectrograph (MaHPS) — formerly also referred to as FOCES — is a high-resolution echelle spectrograph at the 2m telescope of the Wendelstein Observatory. One of its main scientific goals is the detection of planets at the few m/s level. To achieve such high precisions on a long-term scale, environmental stabilization of the instrument is required. The currently used temperature and pressure control systems are introduced and we present two different temperature control setups, with two and three actively controlled layers respectively. A series of measurements with an Astro Frequency Comb (AFC) as calibrator is shown to illustrate the system performance.
The Andromeda galaxy (M31) contains a box/peanut bulge (BPB) entangled with a classical bulge (CB) requiring a triaxial modelling to determine the dynamics, stellar and dark matter mass. We construct made-to-measure models fitting new VIRUS-W IFU bulge stellar kinematic observations, the IRAC-3.6$\mu$m photometry, and the disc's HI rotation curve. We explore the parameter space for the 3.6$\mu$m mass-to-light ratio $(\Upsilon_{3.6})$, the bar pattern speed ($\Omega_p$), and the dark matter mass in the composite bulge ($M^B_{DM}$) within 3.2kpc. Considering Einasto dark matter profiles, we find the best models for $\Upsilon_{3.6}=0.72\pm0.02\,M_\odot/L_\odot$, $M^B_{DM}=1.2^{+0.2}_{-0.4}\times10^{10}M_\odot$ and $\Omega_p=40\pm5\,km/s/kpc$. These models have a dynamical bulge mass of $M_{dyn}^B=4.25^{+0.10}_{-0.29}\times10^{10}M_{\odot}$ including a stellar mass of $M^B=3.09^{+0.10}_{-0.12}\times10^{10}M_\odot$(73%), of which the CB has $M^{CB}=1.18^{+0.06}_{-0.07}\times10^{10}M_\odot$(28%) and the BPB $M^{BPB}=1.91\pm0.06\times10^{10}M_\odot$(45%). We also explore models with NFW haloes finding that, while the Einasto models better fit the stellar kinematics, the obtained parameters agree within the errors. The $M^B_{DM}$ values agree with adiabatically contracted cosmological NFW haloes with M31's virial mass and radius. The best model has two bulge components with completely different kinematics that only together successfully reproduce the observations ($\mu_{3.6},\upsilon_{los},\sigma_{los},h3,h4$). The modelling includes dust absorption which reproduces the observed kinematic asymmetries. Our results provide new constraints for the early formation of M31 given the lower mass found for the classical bulge and the shallow dark matter profile, as well as the secular evolution of M31 implied by the bar and its resonant interactions with the classical bulge, stellar halo and disc.
We describe the pre-OmegaTranS project, a deep survey for transiting extra-solar planets in the Carina region of the Galactic disc. In 2006–2008, we observed a single dense stellar field with a very high cadence of ∼2 min using the European Southern Observatory Wide Field Imager at the La Silla Observatory. Using the Astronomical Wide-field Imaging System for Europe environment and the Munich Difference Imaging Analysis pipeline, a module that has been developed for this project, we created the light curves of 16 000 stars with more than 4000 data points which we searched for periodic transit signals using a box-fitting least-squares detection algorithm. All light curves are publicly available. In the course of the pre-OmegaTranS project, we identified two planet candidates – POTS-1b and POTS-C2b – which we present in this work. With extensive follow-up observations we were able to confirm one of them, POTS-1b, a hot Jupiter transiting a mid-K dwarf. The planet has a mass of 2.31 ± 0.77 MJup, a radius of 0.94 ± 0.04 RJup and a period of P = 3.16 d. The host star POTS-1 has a radius of 0.59 ± 0.02 R⊙ and a mass of 0.70 ± 0.05 M⊙. Due to its low apparent brightness of I = 16.1 mag, the follow-up and confirmation of POTS-1b was particularly challenging and costly.
We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ellipticals. This galaxy has been found to be uniformly old despite being counter-rotating. In contrast, the cold central disc of NGC 4478 is younger, richer in metals and less overabundant than the main body of the galaxy. This points to a prolonged star formation history, typical of an undisturbed disc-like, gas-rich (possibly pre-enriched) structure.
We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The high irradiation from the host star ranks the planet in the pM class.
We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey (EDisCS). These data are combined with the photometry published by Aragón-Salamanca, Baugh & Kauffmann and a low-redshift comparison sample built from the BCG catalogue of von der Linden et al. BCG luminosities are measured inside a metric circular aperture with 37 kpc diameter. In agreement with previous studies, we find that the K-band Hubble diagram for BCGs exhibits very low scatter (∼0.35) over a redshift range of 0 < z < 1. The colour and rest-frame K-band luminosity evolution of the BCGs are in good agreement with population synthesis models of stellar populations which formed at z > 2 and evolved passively thereafter. In contrast with some previous studies, we do not detect any significant change in the stellar mass of the BCG since z∼ 1. These results do not seem to depend on the velocity dispersion of the parent cluster. We also find that there is a correlation between the 1D velocity dispersion of the clusters (σcl) and the K-band luminosity of the BCGs (after correcting for passive-evolution). The clusters with large velocity dispersions, and therefore masses, tend to have brighter BCGs, i.e. BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by ∼70 per cent over a two order of magnitude range in cluster mass. Furthermore, this dependency does not change significantly with redshift. We have compared our observational results with the hierarchical galaxy formation and evolution model predictions of De Lucia & Blaizot. We find that the models predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3–4 since z= 1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCG's stellar mass and the velocity dispersion (mass) of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured magnitudes inside a fixed metric aperture while the models compute total luminosities.
We present a grid-based non-parametric approach to obtain a triaxial three-dimensional luminosity density from its surface brightness distribution. Triaxial deprojection is highly degenerate and our approach illustrates the resulting difficulties. Fortunately, for massive elliptical galaxies, many deprojections for a particular line of sight can be discarded, because their projection along other lines of sight does not resemble elliptical galaxies. The near-elliptical isophotes of these objects imply near ellipsoidal intrinsic shapes. In fact, deprojection is unique for densities distributed on ellipsoidal shells. The constrained non-parametric deprojection method we present here relaxes this constraint and assumes that the contours of the luminosity density are boxy/discy ellipsoids with radially varying axis ratios. With this approach we are able to reconstruct the intrinsic triaxial densities of our test models, including one drawn from an $N$-body simulation. The method also allows to compare the relative likelihood of deprojections at different viewing angles. We show that the viewing orientations of individual galaxies with nearly ellipsoidal isophotal shapes can be constrained from photometric data alone.