Abstract Since 2012 August, the Radiation Assessment Detector (RAD) on the Curiosity rover has been characterizing the Martian surface radiation field which is essential in preparation for future crewed Mars missions. RAD observed radiation dose is influenced by variable topographical features as the rover traverses through the terrain. In particular, while Curiosity was parked near a butte in the Murray Buttes area, we find a decrease of the dose rate by (5 1)% as 19% of the sky was obstructed, versus 10% in an average reference period. Combining a zenith‐angle‐dependent radiation model and the rover panoramic visibility map leads to a predicted reduction of the downward dose by 12% due to the obstruction, larger than the observed decrease. With the hypothesis that this difference is attributable to albedo radiation coming from the butte, we estimate the (flat‐terrain) albedo radiation to be about 19% of the total surface dose.
Abstract The Mars Science Laboratory Curiosity rover has explored over 400 m of vertical stratigraphy within Gale crater to date. These fluvio‐deltaic, lacustrine, and aeolian strata have been well‐documented by Curiosity's in situ and remote science instruments, including the Mast Camera (Mastcam) pair of multispectral imagers. Mastcam visible to near‐infrared spectra can broadly distinguish between iron phases and oxidation states, and in combination with chemical data from other instruments, Mastcam spectra can help constrain mineralogy, depositional origin, and diagenesis. However, no traverse‐scale analysis of Mastcam multispectral data has yet been performed. We compiled a database of Mastcam spectra from >600 multispectral observations and quantified spectral variations across Curiosity's traverse through Vera Rubin ridge (sols 0–2302). From principal component analysis and an examination of spectral parameters, we identified nine rock spectral classes and five soil spectral classes. Rock classes are dominated by spectral differences attributed to hematite and other oxides (due to variations in grain size, composition, and abundance) and are mostly confined to specific stratigraphic members. Soil classes fall along a mixing line between soil spectra dominated by fine‐grained Fe‐oxides and those dominated by olivine‐bearing sands. By comparing trends in soil versus rock spectra, we find that locally derived sediments are not significantly contributing to the spectra of soils. Rather, varying contributions of dark, mafic sands from the active Bagnold Dune field is the primary spectral characteristic of soils. These spectral classes and their trends with stratigraphy provide a basis for comparison in Curiosity's ongoing exploration of Gale crater.
Abstract On February 18, 2021 NASA's Perseverance rover landed in Jezero crater, located at the northwestern edge of the Isidis basin on Mars. The uppermost surface of the present‐day crater floor is dominated by a distinct geologic assemblage previously referred to as the dark‐toned floor. It consists of a smooth, dark‐toned unit overlying and variably covering light‐toned, roughly eroded deposits showing evidence of discrete layers. In this study, we investigated the stratigraphic relations between materials that comprise this assemblage, the main western delta deposit, as well as isolated mesas located east of the main delta body that potentially represent delta remnants. A more detailed classification and differentiation of crater floor units in Jezero and determination of their relative ages is vital for the understanding of the geologic evolution of the crater system, and determination of the potential timeline and environments of habitability. We have investigated unit contacts using topographic profiles and DEMs as well as the distribution of small craters and fractures on the youngest portions of the crater floor. Our results indicate that at least some of the deltaic deposition in Jezero postdates emplacement of the uppermost surface of the crater floor assemblage. The inferred age of the floor assemblage can therefore help to constrain the timing of the Jezero fluviolacustrine system, wherein at least some lake activity postdates the age of the uppermost crater floor. We present hypotheses that can be tested by Perseverance and can be used to advance our knowledge of the geologic evolution of the area.
"Jake_M," the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).