The cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2) proteins have been implicated in the activation of NF-kappaB by TNFalpha; however, genetic deletion of either cIAP1 or 2 did not support a physiologically relevant role, perhaps because of functional redundancy. To address this, we used combined genetic and siRNA knockdown approaches and report that cIAP1 and 2 are indeed critical, yet redundant, regulators of NF-kappaB activation upon TNFalpha treatment. Whereas NF-kappaB was properly activated by TNFalpha in cultured and primary cells deficient in either cIAP1 or 2, removal of both cIAPs severely blunted its activation. After treatment with TNFalpha, cIAP1 and 2 were rapidly recruited to the TNF receptor 1, along with the adapter protein TNF receptor associated factor 2. Importantly, either cIAP1 or 2 was required for proper TNF receptor 1 signalosome function. In their combined absence, polyubiquitination of receptor interacting protein 1, an upstream event necessary for NF-kappaB signaling, was attenuated. As a result, phosphorylation of the inhibitor of kappaB kinase beta was diminished, and signal transduction was severely blunted. Consequently, cells missing both cIAP1 and 2 were sensitized to TNFalpha-mediated apoptosis. Collectively, these data demonstrate that either cIAP1 or 2 is required for proper Rip1 polyubiquitination and NF-kappaB activation upon TNFalpha treatment.
The tumor suppressor Trp53 (p53) inhibits cell growth after acute stress by regulating gene transcription. The mammalian genome contains hundreds of p53-binding sites. However, whether p53 participates in the regulation of cardiac tissue homeostasis under normal conditions is not known. To examine the physiologic role of p53 in adult cardiomyocytes in vivo, Cre-loxP-mediated conditional gene targeting in adult mice was used. Genome-wide transcriptome analyses of conditional heart-specific p53 knockout mice were performed. Genome-wide annotation and pathway analyses of >5,000 differentially expressed transcripts identified many p53-regulated gene clusters. Correlative analyses identified >20 gene sets containing more than 1,000 genes relevant to cardiac architecture and function. These transcriptomic changes orchestrate cardiac architecture, excitation-contraction coupling, mitochondrial biogenesis, and oxidative phosphorylation capacity. Interestingly, the gene expression signature in p53-deficient hearts confers resistance to acute biomechanical stress. The data presented here demonstrate a role for p53, a previously unrecognized master regulator of the cardiac transcriptome. The complex contributions of p53 define a biological paradigm for the p53 regulator network in the heart under physiological conditions.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.
Significance Using functional genomic screens, we have identified resistance mechanisms to the clinical TTK protein kinase inhibitor (TTKi) CFI-402257 in breast cancer. As this and other TTKi are currently in clinical trials, understanding determinants of tumor drug response could permit rational selection of patients for treatment. We found that TTKi resistance is conferred by impairing anaphase-promoting complex/cyclosome (APC/C) function to minimize the lethal effects of mitotic segregation errors. Discovery of this mechanism in aneuploid cancer cells builds on previous reports indicating that weakening the APC/C promotes tolerance of chromosomal instability in diploid cells. Our work suggests that APC/C functional capacity may serve as a clinically useful biomarker of tumor response to TTKi that warrants investigation in ongoing clinical trials.
Recent evidence has indicated that common mechanisms play roles among multiple neurological diseases. However, the specifics of these pathways are not completely understood. Stroke is caused by the interruption of blood flow to the brain, and cumulative evidence supports the critical role of oxidative stress in the ensuing neuronal death process. DJ-1 (PARK7) has been identified as the gene linked to early-onset familial Parkinson's disease. Currently, our work also shows that DJ-1 is central to death in both in Vitro and in Vivo models of stroke. Loss of DJ-1 increases the sensitivity to excitotoxicity and ischemia, whereas expression of DJ-1 can reverse this sensitivity and indeed provide further protection. Importantly, DJ-1 expression decreases markers of oxidative stress after stroke insult in Vivo, suggesting that DJ-1 protects through alleviation of oxidative stress. Consistent with this finding, we demonstrate the essential role of the oxidation-sensitive cysteine-106 residue in the neuroprotective activity of DJ-1 after stroke. Our work provides an important example of how a gene seemingly specific for one disease, in this case Parkinson's disease, also appears to be central in other neuropathological conditions such as stroke. It also highlights the important commonalities among differing neuropathologies.
TNF receptor-associated factor 2 (TRAF2) is a key intracellular signaling mediator that acts downstream of not only TNFα but also various members of the TNFα superfamily. Here, we report that, despite their lack of TNFα signaling, TRAF2(-/-)TNFα(-/-) mice develop an inflammatory disorder characterized by autoantibody accumulation and organ infiltration by T cells with the phenotypes of activated, effector, and memory cells. RAG1(-/-) mice reconstituted with TRAF2(-/-)TNFα(-/-) bone marrow cells showed increased numbers of hyperactive T cells and rapidly developed progressive and eventually lethal inflammation. No inflammation was observed in RAG1(-/-) mice reconstituted with TRAF2(-/-)TNFα(-/-)T-cell receptor β(-/-) or TRAF2(-/-)TNFα(-/-)NFκB-induced kinase(+/-) bone marrow cells. The pathogenic TRAF2(-/-)TNFα(-/-) T cells showed constitutive NFκB2p52 activation and produced elevated levels of T-helper 1 and T-helper 17 cytokines. Our results suggest that a regulatory circuit consisting of TRAF2-NFκB-induced kinase-NFκB2p52 is essential for the proper control of effector T-cell polarization and that loss of T-cell TRAF2 function induces constitutive NFκB2p52 activity that drives fatal autoimmune inflammation independently of TNFα signaling. The involvement of this regulatory circuit in controlling autoimmune responses highlights the delicate balance required to avoid paradoxical adverse events when implementing new targeted anti-inflammatory therapies.
Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.
Significance Basal-like/BRCA1-associated breast cancer (BC) is a very aggressive form of BC that frequently occurs in young women, with devastating effects. Since tailored therapies are lacking for this type of tumor, scientists and clinicians are searching for weaknesses that can be therapeutically exploited. Here we describe the role of the transcription factor aryl hydrocarbon receptor (AhR) in supporting BC growth by controlling reactive oxygen species (ROS) levels and the tumor-promoting features of the microenvironment. In BC cells, AhR activation mediates the link between intracellular ROS regulation and the protumorigenic functions of the surrounding immune system. We propose that tailored inhibition of AhR-regulated pathways can lead to BC eradication by pushing it beyond its ROS tolerance limit and depriving it of tumor-supporting immune cells.