Abstract Preliminary results of an investigation to study the dimensional reliability and potential of small format film products, allied with their use in small format cameras for photogrammetry, are presented. Investigations included analysis of factors influencing both in plane and out of plane deformations. Experiments were conducted using commercially available 70 mm, 120 and 220 film products, processed according to manufacturers’recommendations. Elements of camera design are discussed in the light of results obtained from the measurement of réseau images produced from a modified Hasselblad SWC camera.
The illumination dome provides a stable environment for photography of cultural heritage objects with multi-directional lighting. Photogrammetry for 3D reconstruction, on the other hand, is usually based on an image set taken under ambient lighting by a hand-held camera moved to many positions around the object. This study investigated whether the photogrammetric image sets could be captured entirely within the dome and compared their accuracy with laser scan data.
Consumer grade digital cameras are widely used for close range photogrammetric applications because of the convenience of digital images and the low cost of capture and reproduction. Since the introduction of digital cameras in the 1980s, there has been a strong divide between relatively inexpensive, low resolution, compact digital cameras, and relatively expensive, high resolution, professional digital cameras. In recent years, the improved affordability of SLR (Single Lens Reflex) style digital cameras has increased the use of this class of camera, to some degree displacing professional cameras. Digital cameras are quite often bundled with a consumer grade zoom lens that is designed for the quality of the image, rather than the geometric stability of the calibration. When these cameras are used for photogrammetric applications, it is common practice that a high quality, fixed focal length lens is purchased and used in preference to the zoom lens. Calibration tests were conducted on a range of different digital cameras, all within the SLR class, to ascertain the differences between zoom and fixed lenses when used with these cameras. Analyses are presented that indicate the differences between the two lens types in terms of accuracy, precision and stability and suggest that although acceptable results can be obtained using zoom lenses, a fixed lens provides superior results.
Topographic measurements for detailed studies of processes such as erosion or mass movement are usually acquired by expensive laser scanners or rigorous photogrammetry. Here, we test and use an alternative technique based on freely available computer vision software which allows general geoscientists to easily create accurate 3D models from field photographs taken with a consumer‐grade camera. The approach integrates structure‐from‐motion (SfM) and multiview‐stereo (MVS) algorithms and, in contrast to traditional photogrammetry techniques, it requires little expertise and few control measurements, and processing is automated. To assess the precision of the results, we compare SfM‐MVS models spanning spatial scales of centimeters (a hand sample) to kilometers (the summit craters of Piton de la Fournaise volcano) with data acquired from laser scanning and formal close‐range photogrammetry. The relative precision ratio achieved by SfM‐MVS (measurement precision: observation distance) is limited by the straightforward camera calibration model used in the software, but generally exceeds 1:1000 (i.e., centimeter‐level precision over measurement distances of 10 s of meters). We apply SfM‐MVS at an intermediate scale, to determine erosion rates along a ∼50‐m‐long coastal cliff. Seven surveys carried out over a year indicate an average retreat rate of 0.70 ± 0.05 m a −1 . Sequential erosion maps (at ∼0.05 m grid resolution) highlight the spatiotemporal variability in the retreat, with semivariogram analysis indicating a correlation between volume loss and length scale. Compared with a laser scanner survey of the same site, SfM‐MVS produced comparable data and reduced data collection time by ∼80%.
Abstract. This paper presents the capabilities of detecting relevant geometry of railway track for monitoring purposes from static terrestrial laser scanning (TLS) systems at platform level. The quality of the scans from a phased based scanner (Scanner A) and a hybrid timeof- flight scanner (Scanner B) are compared by fitting different sections of the track profile to its matching standardised rail model. The various sections of track investigated are able to fit to the model with an RMS of less than 3 mm. Both scanners show that once obvious noise and artefacts have been removed from the data, the most confident fit of the point cloud to the model is the section closest to the scanner position. The results of the fit highlight the potential to use this method as a bespoke track monitoring tool during major redevelopment projects where traditional methods, such as robotic total stations, results in missed information, for example due to passing trains or knocked prisms and must account for offset target locations to compute track parameters.