Abstract Since both observations and theory indicate weak dissipation, a frictionless one‐dimensional model elucidates the dynamics of the surge and is used to hindcast and forecast. Wind over the shallow northern Adriatic dominates the forcing. The relative phases of the astronomical tide, the storm tide, and the preexisting seiche determines flooding. Good real time predictions are now in progress.
Numerical solutions are obtained to the path equation of the free jet which was derived in Part I of this study, for values of the parameters relevant to the Gulf Stream. Comparison is made with the observational data. It is shown that this steady state theory can describe the mean position of the stream as it falls off the continental shelf into deep water. The meandering of the stream about this mean position is discussed in some detail.
Real-time operational shipboard forecasts of Iceland–Faeroe frontal variability were executed for the first time with a primitive equation model. High quality, intensive hydrographic surveys during August 1993 were used for initialization, updating, and validation of the forecasts. Vigorous and rapid synoptic events occurred over several-day timescales including a southeastward reorientation of the Iceland–Faeroe Front and the development of a strong, cold deep-sock meander. A qualitative and quantitative assessment of the skill of these forecasts shows they captured the essential features of both events. The anomaly pattern correlation coefficient and the rms error between forecast and observed fields are particularly impressive (and substantially superior to persistence) for the forecast of the cold meander.
Abstract The nonlinear multiscale dynamics of the Monterey Bay circulation during the Second Autonomous Ocean Sampling Network (AOSN-II) Experiment (August 2003) is investigated in an attempt to understand the complex processes underlying the highly variable ocean environment of the California coastal region. Using a recently developed methodology, the localized multiscale energy and vorticity analysis (MS-EVA) and the MS-EVA-based finite-amplitude hydrodynamic instability theory, the processes are reconstructed on three mutually exclusive time subspaces: a large-scale window, a mesoscale window, and a submesoscale window. The ocean is found to be most energetic in the upper layers, and the temporal mesoscale structures are mainly trapped above 200 m. Through exploring the nonlinear window–window interactions, it is found that the dynamics underlying the complex surface circulation is characterized by a well-organized, self-sustained bimodal instability structure: a Bay mode and a Point Sur mode, which are located near Monterey Bay and west of Point Sur, respectively. Both modes are of mixed types, but they are distinctly different in dynamics. The former is established when the wind relaxes, while the latter is directly driven by the wind. Either way, the wind instills energy into the ocean, which is stored within the large-scale window and then released to fuel temporal mesoscale processes. Upon wind relaxation, the generated mesoscale structures propagate northward along the coastline, in a form with dispersion properties similar to that of a free thermocline-trapped coastal-trapped wave. Between these two modes, a secondary instability is identified in the surface layer during 15–21 August, transferring energy to the temporal submesoscale window. Also studied is the deep-layer flow, which is unstable all the time throughout the experiment within the Bay and north of the deep canyon. It is observed that the deep temporal mesoscale flow within the Bay may derive its energy from the submesoscale window as well as from the large-scale window. This study provides a real ocean example of how secondary upwelling can be driven by winds through nonlinear instability and how winds may excite the ocean via an avenue distinctly different from the classical paradigms.