Exposure to traffic-related particulate air pollution has been linked with excess risks for a range of cardiovascular, respiratory and neurological health outcomes; risks likely to be exacerbated in young children attending schools adjacent to highly-trafficked roads. One immediate way of reducing airborne PM concentrations at the local (i.e., near-road community) scale is installation of roadside vegetation as a means of passive pollution abatement. Roadside vegetation can decrease airborne PM concentrations, through PM deposition on leaves, but can also increase them, by impeding airflow and PM dispersion. Critical to optimizing PM removal is selection of species with high particle deposition velocity (Vd) values, currently under-parameterised in most modelling studies. Here, the measured amounts of leaf-deposited magnetic PM after roadside greening ('tredge') installation, and measured reductions in playground PM, particle number and black carbon concentrations demonstrate that air quality improvements by deposition can be achieved at the local, near-road, community/playground scale. PM deposition on the western red cedar tredge removed ~ 49% of BC, and ~ 46% and 26% of the traffic-sourced PM2.5 and PM1, respectively. These findings demonstrate that roadside vegetation can be designed, installed and maintained to achieve rapid, significant, cost-effective improvement of air quality by optimising PM deposition on plant leaves.
Iron-bearing particulate matter produced by vehicle emissions is known to be toxic. To better quantify potential health risks, we have conducted the first magnetic study of a time-series of London's inhalable particulate matter (<10 μm, PM10), captured by three monitoring stations in central London (Marylebone Road, Earl's Court Road and Oxford Street) through 2010 and 2012. We conducted room-temperature analysis on all the samples, and a limited number of samples were analysed at both high and low temperatures. The high-temperature measurements identified magnetite as the dominant magnetic phase. The low-temperature measurements revealed high numbers of nanoparticles, which, assuming magnetite, are in the grain-size range 1–4 nm. It is estimated that as much as ∼40% of the total magnetic signal at 10 K is from particles <4 nm, that are magnetically 'invisible' at room-temperature and are being routinely under-estimated in room temperature-based magnetic studies. From the low-temperature measurements, the total concentration of magnetite was estimated at ∼7.5%, significantly higher than previously reported. The room-temperature magnetic data were compared with other pollution data, e.g., NOX and PM10, and meteorological data. Mass-dependent terms like the saturation magnetisation were found to display a strong correlation with NOX and PM10, indicating a common source for these pollutants, i.e., vehicle emissions. Magnetic coercivity measurements, which are independent of abundance, and provide information on grain-size, were consistent across all three sampling localities, again suggesting a major dominant source. Relatively small variations in coercivity were correlated with meteorological events, e.g., temperature and precipitation, suggesting preferential removal of larger airborne grains, i.e., >50 nm.
A magnetic study of 16 samples of topsoil and 2 soil profiles (11 samples) in the area of Cisna-Wetlina Landscape Park was carried out.The whole collection of the samples represents typical Carpathian soils -brown and sour.Magnetic susceptibility, frequency, dependence of magnetic susceptibility, temperature dependence of magnetic susceptibility, thermal decay of saturation, isothermal remanent magnetization, parameters of hysteresis loop and anhysteretic remanent magnetization of the samples were measured in a laboratory.Mass magnetic susceptibility of topsoil specimens is below 40•10 -8 m 3 •kg -1 , which indicates that the investigated area is probably not polluted currently.The study of the samples from two soil profiles reveals a slight enhancement of magnetic susceptibility in the upper horizons, presumably related to natural processes.The temperature dependence of magnetic susceptibility and saturation isothermal remanence of four soil samples show that the presence of iron sulphide minerals (pyrrhotite) and maghemite is associated with hematite.The occurrence of other iron sulphide minerals in the soil is also possible.The saturation isothermal remanence curves do not confirm the presence of magnetite.Studies of the hysteresis loop reveal a significant role of paramagnetics among magnetic minerals occurring in the samples.Hysteresis parameters (coercive force, coercivity of remanence, saturation magnetization, isothermal remanent magnetization) and anhysteretic remanent susceptibility allowed the authors to evaluate the grain size distribution and reveal the presence of pseudo-single domain (PSD) grains.
Estimates of tyre and brake wear emission factors are presented, derived from data collected from roadside and urban background sites on the premises of the University of Birmingham, located in the UK's second largest city. Size-fractionated particulate matter samples were collected at both sites concurrently in the spring/summer of 2019 and analysed for elemental concentrations and magnetic properties. Using Positive Matrix Factorisation (PMF), three sources were identified in the roadside mass increment of the 1.0-9.9 μm stages of MOUDI impactors located at both sites, namely: brake dust (7.1%); tyre dust (9.6%); and crustal (83%). The large fraction of the mass apportioned to crustal material was suspected to be mainly from a nearby construction site rather than resuspension of road dust. By using Ba and Zn as elemental tracers, brake and tyre wear emission factors were estimated as 7.4 mg/veh.km and 9.9 mg/veh.km, respectively, compared with the PMF-derived equivalent values of 4.4 mg/veh.km and 11 mg/veh.km. Based on the magnetic measurements, an emission factor can be estimated independently for brake dust of 4.7 mg/veh.km. A further analysis was carried out on the concurrently measured roadside increment in the particle number size distribution (10 nm-10 μm). Four factors were identified in the hourly measurements: traffic exhaust nucleation; traffic exhaust solid particles; windblown dust; and an unknown source. The high increment of the windblown dust factor, 3.2 μg/m3, was comparable in magnitude to the crustal factor measured using the MOUDI samples (3.5 μg/m3). The latter's polar plot indicated that this factor was dominated by a large neighbouring construction site. The number emission factors of the exhaust solid particle and exhaust nucleation factors were estimated as 2.8 and 1.9 x 1012/veh.km, respectively.