Abstract The middle Permian Maokou Formation in the Longnüsi area in the central Sichuan Basin is currently a key formation for exploration and development. The evaluation of the current in situ stress in this area is of great significance for fracture prediction, well pattern deployment, drilling and construction, and fracturing stimulation. This study clarifies the current direction and magnitude distributions of the in situ stress by evaluating the Maokou Formation in the Longnüsi area using finite-element numerical simulation, acoustic emission experiments, and logging data (including data from imaging logging, array acoustic logging, conventional logging, and cross-dipole acoustic logging). Specifically, the current maximum horizontal stress of the Maokou Formation in the Longnüsi area is mainly in the NW‒SE direction, and the stress direction is greatly affected by the local fault zone. The current minimum horizontal stress magnitude of the Maokou Formation obtained by acoustic emission experiments is between 96.29 and 114.36 MPa, the current maximum horizontal stress magnitude is between 126.01 and 145.10 MPa, and the current horizontal stress difference is between 25.59 and 32.58 MPa. The current minimum and maximum horizontal stress magnitudes both decrease from north to south. The current horizontal stress parameters calculated by Huang’s model are not significantly different from those experimentally measured: there is a difference of less than 8% in the current minimum horizontal stress magnitude, a difference of less than 9% in the maximum horizontal stress magnitude, and a difference of less than 15% in the current horizontal stress difference. Therefore, Huang’s model has good applicability in terms of calculating the current horizontal stresses in the Longnüsi area. The current horizontal stress parameters, which are numerically simulated with the finite-element method, are also not much different from those experimentally measured: there is a difference of less than 11% in the current minimum horizontal stress magnitude, a difference of less than 10% in the maximum horizontal stress magnitude, and a difference of less than 20% in the current horizontal stress difference. The numerically simulated current horizontal stress also decreases from north to south. Therefore, the simulated results are highly accurate. This study clarifies the directions and magnitudes of the current in situ stress state of the Maokou Formation in the Longnüsi area of the central Sichuan Basin and provides a basis for the formulation of exploration and development plans for the Maokou Formation reservoir in the study area.
The pore structure is an important factor affecting reservoir capacity and shale gas production. The shale reservoir of the Longmaxi Formation in the Changning area, Southern Sichuan Basin, is highly heterogeneous and has a complex pore structure. To quantitatively characterize the shale’s pore structure and influencing factors, based on whole rock X-ray diffraction, argon ion polishing electron microscopy observations, and low-temperature nitrogen adsorption-desorption experiments, the characteristics of the shale pore structure are studied by using the Frenkel-Halsey-Hill (FHH) model. The research reveals the following: 1) The pores of the Longmaxi Formation shale mainly include organic pores, intergranular pores, dissolution pores and microfractures. The pore size is mainly micro-mesoporous. Both ink bottle-type pores and semiclosed slit-type pores with good openness exist, but mainly ink bottle-type pores are observed. 2) The pore structure of the Longmaxi Formation shale has self-similarity, conforms to the fractal law, and shows double fractal characteristics. Taking the relative pressure of 0.45 (P/P 0 = 0.45) as the boundary, the surface fractal dimension D sf and the structural fractal dimension D st are defined. D sf is between 2.3215 and 2.6117, and the structural fractal dimension D st is between 2.8424 and 2.9016. The pore structure of micropores and mesopores is more complex. 3) The mineral components and organic matter have obvious control over the fractal dimension of shale, and samples from different wells show certain differences. The fractal dimension has a good positive correlation with the quartz content but an obvious negative correlation with clay minerals. The higher the total organic carbon content is, the higher the degree of thermal evolution, the more complex the pore structure of shale, and the larger the fractal dimension. The results have guiding significance for the characterization of pore structure of tight rocks.