The Huitongshan skarn Cu deposit is located in the southern orogenic belt of Beishan and is one of the most important metallogenic belts in northwestern China. The ore body is hosted within the external contact zone between the K-feldspar granite and Ordovician marble. The zircon U–Pb dating shows that ore-related K-feldspar granite formed at 402 ± 3.0 Ma, which thus constrains that the mineralization of the Huitongshan skarn copper deposits mostly likely occurred in the Early Devonian. Through field investigation and petrographic observation, the deposit formation can be divided into two periods and four stages of mineralization; the skarn period contains the garnet–diopside skarn stage I and magnetite–quartz stage Ⅱ; the quartz–sulfide period contains the quartz–polymetallic sulfide stage III and the quartz–calcite–minor pyrite stage IV. The variations of fluid inclusion (FI) types, homogenization temperatures, and salinities show the fluid evolution process. In stage Ⅰ and stage Ⅱ, the FIs are characterzied by daughter mineral-bearing (S-type) and vapor-rich (V-type) with homogenization temperatures of 352 °C–485 °C. The salinities of V-type and S-type FIs are 2.1–9.8 wt% NaCl equivalent (equiv.) and 41.5–57.0 wt% NaCl equiv., respectively, indicating that these fluids would boil at pressures of 150–500 bar and depths of 0.6–2.0 km. In stage III, the FIs are mainly daughter mineral-bearing (S-type), vapor-rich (V-type), or liquid-rich (l-type) with homogenization temperatures of 260 °C–325℃, 265℃–325℃, 260℃–320℃ and salinities of 35.0–39.4 wt% NaCl equiv., 1.7–3.5 wt% NaCl equiv., and 6.4–11.5 wt% NaCl equiv., respectively; fluid boiling would occur at pressures of 40–100 bar and depths of 0.4–1.0 km. In stage IV, only l-type FIs are observed, with homogenization temperatures and salinities of 180 °C–245℃ and 2.1–7.2 wt% NaCl equiv., respectively. The HOC isotopes of mineralization stages II–IV suggest that the ore-forming fluids in the early stage (stage Ⅱ) mainly came from magmatic hydrothermal fluid, while a large quantity of meteoric water was mixed with those in the later stages (stage III and IV). The S–Pb isotopic compositions indicate that ore materials were derived from mixing between the magmatic source and the Huaniushan Formation.
The Saibo skarn–porphyry deposit, located in West Tianshan, NW China, is a large copper deposit discovered recently; however, information regarding the differences and connections between skarn and porphyry mineralization remains limited. Thus, this study aimed to investigate fluid inclusions (FIs), H–O–C–S–Pb isotopes, and U–Pb, and Re–Os geochronology to unravel the origin and evolution of the entire hydrothermal system. Skarn mineralization occurs as stratiform and lenticular in the contact zone between the granodiorite porphyry and Kusongmuqieke Group limestone. We identified four mineralization stages: prograde skarn stage (IS), retrograde skarn stage (IIS), quartz–pyrrhotite–chalcopyrite stage (IIIS), and calcite–quartz–pyrite stage (IVS), and four types of FIs: CH4-rich (C-type), halite-bearing (S-type), vapor-rich (V-type), and liquid-rich (L-type) FIs. The homogenization temperatures (Th) of FIs from stages IS, IIIS, and IVS were 366–419, 271–315, and 174–235 °C, respectively, with salinities of 1.7–46.0, 2.2–9.6, and 4.5–7.7 wt% NaCl eqv., respectively. Porphyry mineralization occurs as veinlet-disseminated ores in the granodiorite porphyry. We identified three mineralization stages: quartz–molybdenite–pyrite stage (IP), quartz–chalcopyrite–pyrite stage (IIP), and calcite–quartz–galena stage (IIIP). Unlike skarn mineralization, only the S-, V-, and L-type FIs were identified, with Th of 332–379, 263–315, and 169–233 °C from stages IP, IIP, and IIIP, respectively, and salinities of 1.9–42.3, 2.2–9.6, and 4.2–6.9 wt% NaCl eqv., respectively. The H–O isotope data indicate that the ore-forming fluids were initially derived from magmatic water and gradually diluted by meteoric water during fluid migration. According to C isotope data and the presence of C-type FIs, fluids from skarn mineralization contained more organic carbon than those from porphyry mineralization. The S–Pb isotope data of sulfides suggest that ore-forming materials are derived from both granodiorite porphyry and the Kusongmuqieke Group, although the latter contributed more to skarn mineralization. Pyrites from porphyry mineralization yielded a Re−Os isochron age of 376.0 ± 7.9 Ma, which was slightly younger than the chalcopyrite Re−Os ages of skarn mineralization (>379 Ma). The granodiorite porphyry, which is considered the ore-causative intrusion, yielded a U–Pb age of 380.8 ± 1.8 Ma. Our results indicate that two styles of mineralization were formed successively at different spatial locations during the emplacement of the granodiorite porphyry in a southward subduction setting of the North Tianshan Ocean. The proposed metallogenic model provides a better understanding of the Saibo skarn–porphyry metallogenic system and is expected to assist in the exploration of similar deposits in the West Tianshan orogenic belt.
The Haerdaban Pb-Zn deposit is located on the western edge of the Chinese Western Tianshan Orogen. This deposit consists of stratiform and veined mineralization hosted in Proterozoic carbonaceous and dolomitic limestone. Three metallogenic stages were recognized: an early sedimentary exhalative stage (stage 1), an intermediate metamorphic remobilization stage (stage 2), and a late magmatic-hydrothermal stage (stage 3). Fluid inclusions (FIs) present in stage 1 are liquid-rich aqueous, with homogenization temperatures of 206–246 C and salinities of 5.9–11.6 wt% NaCl eq. FIs present in stage 2 are also liquid-rich aqueous, with homogenization temperatures of 326–349 C and salinities of 3.4–6.6 wt% NaCl eq. FIs present in stage 3 include halite-bearing, vapor-rich aqueous, and liquid-rich aqueous FIs. Homogenization temperatures for these FIs span a range of 249–316 C. Halite-bearing, vapor-rich aqueous, and liquid-rich aqueous FIs yield salinities of 33.8–38.9, 2.6–3.5, and 4.2–8.1 wt% NaCl eq., respectively. Oxygen and hydrogen isotopic data (δ 18 O H2O = 2.6–13.6‰, δD H2O = −94.7 to −40.7‰) indicate that the ore-forming fluids of stages 1–3 were derived from modified seawater, metamorphic water, and magmatic-meteoric mixed water, respectively. Sulfur isotopic data (δ 34 S = 2.1–16.3‰) reveal that ore constituents were derived from mixing of marine sulfate and magmatic materials. Lead isotopic data ( 206 Pb/ 204 Pb = 17.002–17.552, 207 Pb/ 204 Pb = 15.502–15.523, 208 Pb/ 204 Pb = 37.025–37.503) reveal that ore constituents were derived from a mixed crust-mantle source. We propose that the Haerdaban deposit was a Proterozoic sedimentary exhalative deposit overprinted by later metamorphic remobilization and magmatic-hydrothermal mineralization.
The Kuergasheng Pb–Zn deposit is located in the Western Tianshan Orogen, Xinjiang Province, China. The ore bodies are mainly hosted in sandstone of the Tuosikuertawu Formation and are controlled by NW-trending faults. Three paragenetic stages were identified: early pyrite–chalcopyrite–quartz veins (stage 1), middle galena–sphalerite–quartz veins (stage 2), and late sulfide-poor calcite–quartz veins (stage 3). Fluid inclusions (FIs) include liquid-rich aqueous (LV-type), vapor-rich aqueous (VL-type), halite-bearing (S-type), and monophase liquid aqueous (L-type). Homogenization temperatures for FIs from stages 1–3 are 221–251, 173–220, and 145–172 °C, respectively. Stage 1 fluids in LV-, VL-, and S-type FIs yield salinities of 6.2–9.6, 1.7–3.1, and 32.7–34.9 wt % NaCl equiv., respectively. Stage 2 fluids in LV- and S-type FIs have salinities of 5.1–7.9 and 31.9–32.1 wt % NaCl equiv., respectively. Stage 3 fluids in LV- and L-type FIs have salinities of 3.4–5.9 wt % NaCl equiv. Oxygen, hydrogen, and carbon isotopic data (δ18OH2O = −7.7 to 1.7‰, δDH2O = −99.2 to −83.1‰, δ13CH2O = −16.6 to 9.1‰) indicate that the ore-forming fluids have a hybrid origin —an initial magmatic source with input of meteoric water becoming dominant in the later stage. Sulfur and lead isotopic data for galena (δ34S = 5.6 to 6.9‰, 206Pb/204Pb = 18.002–18.273, 207Pb/204Pb = 15.598–15.643, 208Pb/204Pb = 38.097–38.209) reveal that the ore-forming materials were mainly derived from the Beidabate intrusive body and the Tuosikuertawu Formation.
The Jinba gold deposit is located in the Maerkakuli Shear Zone of the south Altay Orogenic Belt, NW China. Mineralization types are classified as altered rock–and quartz vein–type. Orebodies occur as veins or lenses controlled by NW–trending faults, and are hosted in phyllite (Early–Middle Devonian Ashele Formation) and plagiogranite (Early Devonian Habahe Pluton). Three paragenetic stages were identified: early quartz–pyrite–gold (Stage 1), middle quartz–chalcopyrite (Stage 2), and late calcite–quartz–galena–sphalerite (Stage 3). Fluid inclusions within the deposit are liquid–rich aqueous (LV–type), vapor–rich aqueous (VL–type), carbonic–aqueous (LC–type), and purely carbonic (C–type) FIs. Homogenization temperatures for stages 1–3 FIs were 373–406 °C, 315–345 °C, and 237–265 °C, respectively. Fluid salinities for stages 1–3 were 2.1–13.6 wt%, 3.2–6.1 wt% and 3.9–6.0 wt% NaCl equivalent, respectively. The ore–forming fluids evolved from a CO 2 –NaCl–H 2 O ± CH 4 to a NaCl–H 2 O system from stage 1–3. Oxygen, hydrogen, and carbon isotopic data (δ 18 O fluid = 1.7‰–8.1‰, δD fluid = –104.1‰ to –91.7‰, δ 13 C fluid = –0.4‰–6.3‰) indicate that ore–forming fluids were metamorphic hydrothermal origin with the addition of a late meteoric fluid. Sulfur and lead isotope data for pyrite (δ 34 S py = 3.3‰–5.3‰, 206 Pb/ 204 Pb = 17.912.3–18.495, 207 Pb/ 204 Pb = 15.564–15.590, 208 Pb/ 204 Pb = 37.813–38.422) show that the ore–forming materials were mainly derived from diorite and the Ashele Formation. Mineralization, FIs, and isotope studies demonstrate that the Jinba deposit is an orogenic gold deposit.
Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.
The Xiaorequanzi Cu deposit is located in the western part of the Dananhu–Tousuquan Island arc in eastern Tianshan, Xinjiang. It includes stratiform and epithermal-related veinlet mineralization. However, the genesis of this deposit remains controversial. Therefore, fluid inclusions, H–O isotopes, in situ S, and trace elements in pyrite were employed in this study to constrain the origins of the deposit. The Xiaorequanzi Cu deposit’s mineralization stages can be categorized into the following three phases: I. volcanogenic massive sulfide (VMS) mineralization; II. quartz–chalcopyrite–pyrite; and III. quartz–chalcopyrite–sphalerite stages. Fluid inclusion studies suggest that Stage I is distinguished by high-temperature (peak: 320–360 °C) and moderate-salinity (peak: 7–9 wt%) fluids belonging to the H2O–NaCl ± CO2 system. Stages II–III only exhibit vapor–liquid inclusions, with mineralizing fluids belonging to the medium-to-low-temperature (Stage II peak: 160–180 °C; Stage III peak: 120–130 °C) and medium-to-low-salinity (Stage II peak: 5–7 wt%; Atage III peak: 4–6 wt%) H2O–NaCl system. The H–O isotopic data suggest that mineralizing fluid in Stage I is a blend of magmatic and paleo-seawater sources, while in Stages II–III, meteoric water predominates, accompanied by low mineralizing temperatures. In situ S isotope results indicate that the source of mineralizing materials in Stage I (2.52–4.48‰) were magmatic rocks, whereas the markedly higher δ34S values in stages II–III (4.68–6.60‰) suggest sulfur isotope leaching from sedimentary rocks by meteoric water as the main source. The LA–ICP–MS data of pyrite in the Xiaorequanzi Cu deposit suggest that Py1 was formed through volcanic processes, whereas Py2 and Py3 exhibited epithermal characteristics. Throughout the mineralization process, a trend in increasing oxygen and decreasing sulfur fugacity occurred, accompanied by a decreased mineralization temperature. This observation corresponds with the temperature data derived from the fluid inclusions. Additionally, the principal components of different generations of pyrite segregated as two clusters representing the VMS (Stage I) and epithermal mineralization (stages II–III). In summary, based on comprehensive research and previous geochronological studies, it is suggested that the Xiaorequanzi Cu deposit experienced two mineralization stages. The early stage is related to the volcanic activity of the Early Carboniferous (354 Ma), whereas the later stage is associated with Carboniferous–Permian (266–264 Ma) volcanic intrusions.