MicroRNAs (miRNAs) are postulated to be important regulators in cancers. Here, we report a genome-wide miRNA expression analysis in 52 acute myeloid leukemia (AML) samples with common translocations, including t(8;21)/ AML1(RUNX1)-ETO(RUNX1T1) , inv( 16 )/ CBFB-MYH11 , t(15;17)/ PML-RARA , and MLL rearrangements. Distinct miRNA expression patterns were observed for t(15;17), MLL rearrangements, and core-binding factor (CBF) AMLs including both t(8;21) and inv( 16 ) samples. Expression signatures of a minimum of two (i.e., miR-126/126*), three (i.e., miR-224, miR-368, and miR-382), and seven (miR-17–5p and miR-20a, plus the aforementioned five) miRNAs could accurately discriminate CBF, t(15;17), and MLL -rearrangement AMLs, respectively, from each other. We further showed that the elevated expression of miR-126/126* in CBF AMLs was associated with promoter demethylation but not with amplification or mutation of the genomic locus. Our gain- and loss-of-function experiments showed that miR-126/126* inhibited apoptosis and increased the viability of AML cells and enhanced the colony-forming ability of mouse normal bone marrow progenitor cells alone and particularly, in cooperation with AML1-ETO , likely through targeting Polo-like kinase 2 ( PLK2 ), a tumor suppressor. Our results demonstrate that specific alterations in miRNA expression distinguish AMLs with common translocations and imply that the deregulation of specific miRNAs may play a role in the development of leukemia with these associated genetic rearrangements.
Abstract Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2 + -activated K + (BK Ca ) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BK Ca currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca 2+ sensitivity of BK Ca channels. BK Ca α-subunit expression was unchanged, BK Ca β1-subunit and sensitivity of BK Ca to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BK Ca in the MA. Simultaneous [Ca 2+ ] i fluorescence and vasoconstriction testing showed reduced Ca 2+ , leading to diminished BK Ca activation via ryanodine receptor Ca 2+ release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BK Ca , providing new information for further understanding increased risks of hypertension in developmental origins.
Currently, there is limited evidence regarding the association between prenatal exposure to environmental fine particulate matter (PM2.5) and the occurrence of cryptorchidism. The objective of this study was to evaluate the potential correlation between prenatal exposure to PM2.5 and the likelihood of cryptorchidism developing in offspring. We performed a 1:1 case–control study, defining the cases as children diagnosed with cryptorchidism at the Children's Hospital Affiliated to Chongqing Medical University from 2013 to 2017, while the control group comprised children born in the corresponding years who did not have any birth defects, chromosomal abnormalities, and had only trauma-related treatments. Between 2012 and 2017, monthly averages of PM2.5, other pollutants (O3, PM10) and temperature were gathered based on the geographical coordinates of patients' residences. The study assessed the correlation between the two using multivariate logistic regression model, and sensitivity analysis was conducted to assess the stability of the model. We included a total of 2137 cases and 2137 matched controls from 2013 to 2017. Our findings revealed that there was a positive association between exposure to PM2.5 during the first 2 months of pregnancy and the occurrence of cryptorchidism. According to this study, the development of cryptorchidism appears to be associated with maternal exposure to PM2.5 during early pregnancy.
The number of genes in the human genome is still a controversial issue. Whereas most of the genes in the human genome are said to have been physically or computationally identified, many short cDNA sequences identified as tags by use of serial analysis of gene expression (SAGE) do not match these genes. By performing experimental verification of more than 1,000 SAGE tags and analyzing 4,285,923 SAGE tags of human origin in the current SAGE database, we examined the nature of the unmatched SAGE tags. Our study shows that most of the unmatched SAGE tags are truly novel SAGE tags that originated from novel transcripts not yet identified in the human genome, including alternatively spliced transcripts from known genes and potential novel genes. Our study indicates that by using novel SAGE tags as probes, we should be able to identify efficiently many novel transcripts/novel genes in the human genome that are difficult to identify by conventional methods.
Signaling in the human growth hormone (hGH)–human GH receptor system is initiated by a controlled sequential two-step hormone-induced dimerization of two hGH receptors via their extracellular domains (ECDs). Little is currently known about the energetics governing the important regulatory step in receptor signaling (step 2) because of previously existing experimental barriers in characterizing the binding of the second receptor (ECD2). A further complication is that ECD2 binds through contacts from two spatially distinct sites: through its N-terminal domain to hGH, and to ECD1 through its C-terminal domain, which forms a pseudo-2-fold symmetrical interaction between the stems of the two receptors. We report here a detailed evaluation of the energetics of step 2 binding using a modified surface plasmon resonance method that is able to measure accurately the kinetics of the trimolecular binding process and separate the effects of the two binding sites. The binding kinetics of 23 single and 126 ECD1-ECD2 pair-wise alanine mutations was measured. Although both of the ECD2 binding interfaces were found to be important, the ECD1-ECD2 stem–stem contact is the stronger of the two. It was determined that most residues in the binding interfaces act in additive fashion, and that the six residues common in both ECDs contribute very differently to homodimerization depending on which ECD they reside in. This interface is characterized by a binding “hot-spot” consisting of a core of three residues in ECD1 and two in ECD2. There is no similar hot-spot in the N-terminal domain of ECD2 binding to Site2 of hGH. This study suggests ways to engineer ECD molecules that will bind specifically to either Site1 or Site2 of hGH, providing novel reagents for biophysical and biological studies.
Identification of the specific cytogenetic abnormality is one of the critical steps for classification of acute myeloblastic leukemia (AML) which influences the selection of appropriate therapy and provides information about disease prognosis. However at present, the genetic complexity of AML is only partially understood. To obtain a comprehensive, unbiased, quantitative measure, we performed serial analysis of gene expression (SAGE) on CD15 + myeloid progenitor cells from 22 AML patients who had four of the most common translocations, namely t(8;21), t(15;17), t(9;11), and inv(16). The quantitative data provide clear evidence that the major change in all these translocation-carrying leukemias is a decrease in expression of the majority of transcripts compared with normal CD15 + cells. From a total of 1,247,535 SAGE tags, we identified 2,604 transcripts whose expression was significantly altered in these leukemias compared with normal myeloid progenitor cells. The gene ontology of the 1,110 transcripts that matched known genes revealed that each translocation had a uniquely altered profile in various functional categories including regulation of transcription, cell cycle, protein synthesis, and apoptosis. Our global analysis of gene expression of common translocations in AML can focus attention on the function of the genes with altered expression for future biological studies as well as highlight genes/pathways for more specifically targeted therapy.
The ten–eleven translocation (TET) family of methylcytosine dioxygenases initiates demethylation of DNA and is associated with tumorigenesis in many cancers; however, the mechanism is mostly unknown. Here we identify upstream activators and downstream effectors of TET1 in breast cancer using human breast cancer cells and a genetically engineered mouse model. We show that depleting the architectural transcription factor high mobility group AT-hook 2 ( HMGA2 ) induces TET1 . TET1 binds and demethylates its own promoter and the promoter of homeobox A ( HOXA ) genes, enhancing its own expression and stimulating expression of HOXA genes including HOXA7 and HOXA9 . Both TET1 and HOXA9 suppress breast tumor growth and metastasis in mouse xenografts. The genes comprising the HMGA2–TET1–HOXA9 pathway are coordinately regulated in breast cancer and together encompass a prognostic signature for patient survival. These results implicate the HMGA2–TET1–HOX signaling pathway in the epigenetic regulation of human breast cancer and highlight the importance of targeting methylation in specific subpopulations as a potential therapeutic strategy.
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11) were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, whereas acute myeloid leukemia (AML) is the most common acute leukemia in adults. In general, ALL has a better prognosis than AML. To understand the distinct mechanisms in leukemogenesis between ALL and AML and to identify markers for diagnosis and treatment, we performed a large-scale genome-wide microRNA (miRNA, miR) expression profiling assay and identified 27 miRNAs that are differentially expressed between ALL and AML. Among them, miR-128a and -128b are significantly overexpressed, whereas let-7b and miR-223 are significantly down-regulated in ALL compared with AML. They are the most discriminatory miRNAs between ALL and AML. Using the expression signatures of a minimum of two of these miRNAs resulted in an accuracy rate of >95% in the diagnosis of ALL and AML. The differential expression patterns of these four miRNAs were validated further through large-scale real-time PCR on 98 acute leukemia samples covering most of the common cytogenetic subtypes, along with 10 normal control samples. Furthermore, we found that overexpression of miR-128 in ALL was at least partly associated with promoter hypomethylation and not with an amplification of its genomic locus. Taken together, we showed that expression signatures of as few as two miRNAs could accurately discriminate ALL from AML, and that epigenetic regulation might play an important role in the regulation of expression of miRNAs in acute leukemias.