Abstract Although Norway has had an open data policy for seismological data for a long time, access to a good portion of the data required the use of nonstandard tools. This changed with the establishment of a dedicated European Integrated Data Archive (EIDA) node that is operated jointly by the UiB (University of Bergen)-NORSAR. This now gives access to 139 stations and currently 12.1 Tb of data. The archive continues to grow with new data from permanent stations that are added in near-real time, the backfilling of archives from permanent networks and providing access to temporary deployments. The software behind the EIDA node is SeisComP, and access to data and metadata is through standard International Federation of Digital Seismograph Networks (FDSN) and EIDA webservices. Quality metrics are computed through the EIDA WFcatalog tools and in addition Modular Utility for STAtistical kNowledge Gathering metrics are computed with Incorporated Research Institutions for Seismology System for Portable Assessment of Quality. The added value from the new UiB-NORSAR EIDA node is that it integrates data from high-quality single and array stations from the Norwegian intraplate region into the common European system.
<p>The European Plate Observing System (EPOS) is a European project about building a pan-European infrastructure for accessing solid Earth science data, governed now by EPOS ERIC (European Research Infrastructure Consortium). The EPOS-Norway project (EPOS-N; RCN-Infrastructure Programme - Project no. 245763) is a Norwegian project funded by National Research Council. The aim of the Norwegian EPOS e&#8209;infrastructure is to integrate data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories. Among the six EPOS-N project partners, four institutions are providing data &#8211; University of Bergen (UIB), - Norwegian Mapping Authority (NMA), Geological Survey of Norway (NGU) and NORSAR.</p><p>In this contribution, we present the EPOS-Norway Portal as an online, open access, interactive tool, allowing visual analysis of multidimensional data. It supports maps and 2D plots with linked visualizations. Currently access is provided to more than 300 datasets (18 web services, 288 map layers and 14 static datasets) from four subdomains of Earth science in Norway. New datasets are planned to be integrated in the future. EPOS-N Portal can access remote datasets via web services like FDSNWS for seismological data and OGC services for geological and geophysical data (e.g. WMS). Standalone datasets are available through preloaded data files. Users can also simply add another WMS server or upload their own dataset for visualization and comparison with other datasets. This portal provides unique way (first of its kind in Norway) for exploration of various geoscientific datasets in one common interface. One of the key aspects is quick simultaneous visual inspection of data from various disciplines and test of scientific or geohazard related hypothesis. One of such examples can be spatio-temporal correlation of earthquakes (1980 until now) with existing critical infrastructures (e.g. pipelines), geological structures, submarine landslides or unstable slopes. &#160;</p><p>The EPOS-N Portal is implemented by adapting Enlighten-web, a server-client program developed by NORCE. Enlighten-web facilitates interactive visual analysis of large multidimensional data sets, and supports interactive mapping of millions of points. The Enlighten-web client runs inside a web browser. An important element in the Enlighten-web functionality is brushing and linking, which is useful for exploring complex data sets to discover correlations and interesting properties hidden in the data. The views are linked to each other, so that highlighting a subset in one view automatically leads to the corresponding subsets being highlighted in all other linked views.</p>
The Geo-INQUIRE (Geosphere INfrastructure for QUestions into Integrated REsearch) project, supported by the Horizon Europe Programme, is aimed at enhancing services to make data and high-level products accessible to the broad Geoscience scientific community. Geo-INQUIRE’s goal is to encourage curiosity-driven studies into understanding the geosphere dynamics at the interface between the solid Earth, the oceans and the atmosphere using long data streams, high-performance computing and cutting-edge facilities.In the framework of Geo-INQUIRE, Transnational Access (TA, both virtual and on-site) will be provided at six test beds across Europe: the Bedretto Laboratory, Switzerland; the Ella-Link Geolab, Portugal; the Liguria-Nice-Monaco submarine infrastructure, Italy/France; the Irpinia Near-Fault Observatory, Italy; the Eastern Sicily facility, Italy; and the Corinth Rift Laboratory, Greece. These test beds are state-of-the-art research infrastructures, covering the Earth’s surface, subsurface, and marine environments over different spatial scales, from small-scale experiments in laboratories to kilometric submarine fibre cables. The TA will revolve around answering scientific key-questions on the comprehension of fundamental processes associated with geohazards and georesources such as: the preparatory phases of earthquakes, the role of the fluids within the Earth crust, the fluid-solid interaction at the seabed, and the impact of geothermal exploitation. TA will be also offered for software and workflows belonging to the EPOS-ERIC and the ChEESE Centre of Excellence for Exascale in Solid Earth, to develop awarded user’s projects. These are grounded on simulation of seismic waves and rupture dynamics in complex media, tsunamis, subaerial and submarine landslides. HPC-based Probabilistic Tsunami, Seismic and Volcanic Hazard workflows are offered to assess hazard at high-resolution with extensive uncertainty exploration. Support and collaboration will be offered to the awardees to facilitate the access and usage of HPC resources for tackling geoscience problems. Geo-INQUIRE will grant TA to researchers to develop their own lab or numerical experiments with the aim of advancing scientific knowledge of Earth processes while fostering cross-disciplinary research across Europe. To be granted, researchers submit a proposal to the yearly TA calls that will be issued three times during the project life. Calls will be advertised at the Geo-INQUIRE web page https://www.geo-inquire.eu/ and through the existing community channels.To encourage the cross-disciplinary research, Geo-INQUIRE will also organize a series of training and workshops, focused on data, data products and software delivered by research infrastructures, and useful for researchers. In addition, two summer schools will be organized, dedicated to cross-disciplinary interactions of solid earth and marine science.The proposals, for both transnational access and training, will be evaluated by a panel that reviews the technical and scientific feasibility of the project, ensuring equal opportunities and diversity in terms of gender, geographical distribution and career stage. The first call is expected to be issued by the end of Summer 2023. The data and products generated during the TAs will be made available to the scientific community via the project’s strict adherence to FAIR principles.
<p>The European Plate Observing System (EPOS) is a European project about building a pan-European infrastructure for accessing solid Earth science data, governed now by EPOS ERIC (European Research Infrastructure Consortium). The EPOS-Norway project (EPOS-N; RCN-Infrastructure Programme - Project no. 245763) is a Norwegian project funded by National Research Council. The aim of the Norwegian EPOS e&#8209;infrastructure is to integrate data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories. Among the six EPOS-N project partners, four institutions are providing data &#8211; University of Bergen (UIB), - Norwegian Mapping Authority (NMA), Geological Survey of Norway (NGU) and NORSAR.</p><p>In this contribution, we present the EPOS-Norway Portal as an online, open access, interactive tool, allowing visual analysis of multidimensional data. It supports maps and 2D plots with linked visualizations. Currently access is provided to more than 300 datasets (18 web services, 288 map layers and 14 static datasets) from four subdomains of Earth science in Norway. New datasets are planned to be integrated in the future. EPOS-N Portal can access remote datasets via web services like FDSNWS for seismological data and OGC services for geological and geophysical data (e.g. WMS). Standalone datasets are available through preloaded data files. Users can also simply add another WMS server or upload their own dataset for visualization and comparison with other datasets. This portal provides unique way (first of its kind in Norway) for exploration of various geoscientific datasets in one common interface. One of the key aspects is quick simultaneous visual inspection of data from various disciplines and test of scientific or geohazard related hypothesis. One of such examples can be spatio-temporal correlation of earthquakes (1980 until now) with existing critical infrastructures (e.g. pipelines), geological structures, submarine landslides or unstable slopes.&#160;</p><p>The EPOS-N Portal is implemented by adapting Enlighten-web, a server-client program developed by NORCE. Enlighten-web facilitates interactive visual analysis of large multidimensional data sets, and supports interactive mapping of millions of points. The Enlighten-web client runs inside a web browser. An important element in the Enlighten-web functionality is brushing and linking, which is useful for exploring complex data sets to discover correlations and interesting properties hidden in the data. The views are linked to each other, so that highlighting a subset in one view automatically leads to the corresponding subsets being highlighted in all other linked views.</p>
Abstract The European Integrated Data Archive (EIDA) is the infrastructure that provides access to the seismic-waveform archives collected by European agencies. This distributed system is managed by Observatories and Research Facilities for European Seismology. EIDA provides seamless access to seismic data from 12 data archives across Europe by means of standard services, exposing data on behalf of hundreds of network operators and research organizations. More than 12,000 stations from permanent and temporary networks equipped with seismometers, accelerometers, pressure sensors, and other sensors are accessible through the EIDA federated services. A growing user base currently counting around 3000 unique users per year has been requesting data and using EIDA services. The EIDA system is designed to scale up to support additional new services, data types, and nodes. Data holdings, services, and user numbers have grown substantially since the establishment of EIDA in 2013. EIDA is currently active in developing suitable data management approaches for new emerging technologies (e.g., distributed acoustic sensing) and challenges related to big datasets. This article reviews the evolution of EIDA, the current data holdings, and service portfolio, and gives an outlook on the current developments and the future envisaged challenges.
The European Plate Observing System (EPOS) is a long-term initiative aimed at integrating research infrastructures for solid Earth science in Europe. EPOS provides a sustainable, multidisciplinary user-oriented platform - the EPOS Data Portal - that facilitates data integration, access, use, and re-use, while adhering to the FAIR principles. The paper describes the key governance, community building, and technical aspects for achieving multidisciplinary data integration through the portal. It also outlines the key portal features for aggregating approximately 250 data sources from more than ten different scientific communities. The main architectural concepts underpinning the portal, namely the rich-metadata, the service-driven data provision, and the usage of semantics, are outlined. The paper discusses the challenges encountered during the creation of the portal, describes the community engagement process, and highlights the benefits to the scientific community and society. Future work includes expanding portal functionalities to include data analysis, processing, and visualization and releasing the portal as an open-source software package.