To better understand the volcanic phenomena acting on Montserrat, the SEA-CALIPSO seismic experiment (Seismic Experiment with Airgun-source – Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory) was conducted in 2007 December with the aim of imaging the upper crust and the magmatic system feeding the active Soufriére Hills Volcano. The 3-D survey covered an area of about 50 × 40 km and involved the deployment of 247 land stations and ocean-bottom seismometers (OBSs). A subset of the data, recorded by four OBSs and four land stations on a southeast to northwest line, has been analysed, and traveltimes have been inverted to obtain a 2-D seismic velocity model through the island. Inverted phases include crustal and sediment P waves and wide-angle reflections. The resulting velocity model reveals the presence of a high velocity body (3.5–5.5 km s-1) beneath the island, with highest velocities beneath the Soufriére and Centre Hills, corresponding primarily to the cores of these volcanic edifices, built of a pile of andesite lava domes and subsequent intrusions. In the offshore region, velocities in the surficial sediment layer vary from 1.5 to 3.0 km s-1, consistent with a mainly calcareous and volcaniclastic composition. A wide-angle reflector is observed at a depth of ∼1200 m below the seabed, and appears to deepen beneath the island. The upper crust beneath this reflector has velocities of 4.0–6.0 km s-1 and is inferred to correspond to plutonic and hypabyssal rocks and sedimentary material of the old arc. The high velocity region beneath the island, extends into the crust to a depth of at least 5 km, and is believed to be caused by an intrusive complex, possibly of intermediate composition. A low velocity zone, as would be expected in the presence of an active magma chamber, was not observed perhaps due to the limited resolution beneath ∼5 km depth. Our results so far provide the first wide-angle seismic constraints on the upper crustal structure of the island to a depth of 10 km, and will help understanding the processes that drive volcanism at Montserrat and other island arc volcanoes.
An exceptional opportunity to sample several large blocks sourced from the same region of the growing Soufrière Hills lava dome has documented a significant increase in the presence of mafic enclaves in the host andesite during the course of a long‐lived eruptive episode with several phases. In 1997 (Phase I) mafic inclusions comprised ∼1 volume percent of erupted material; in 2007 (Phase III) deposits their volumetric abundance increased to 5–7 percent. A broader range of geochemically distinctive types occurs amongst the 2007 enclaves. Crystal‐poor enclaves generally have the least evolved (basaltic) compositions; porphyritic enclaves represent compositions intermediate between basaltic and andesitic compositions. The absence of porphyritic enclaves prior to Phase III magmatism at Soufrière Hills Volcano suggests that a mixing event occurred during the course of the current eruptive episode, providing direct evidence consistent with geophysical observations that the system is continuously re‐invigorated from depth.
Magma fluxes in the crust control the thermal viability and mechanical stability of magma chambers. We estimated the magma fluxes required to generate the negative seismic velocity anomaly observed below Soufrière Hills volcano, Montserrat. Growth of a magma body by accretion of andesitic sills was simulated numerically and the resulting temperatures and melt fractions were used to calculate a synthetic anomaly of seismic wave velocity, which was filtered to be comparable with the velocity anomaly obtained from a tomographic experiment. Petrology indicates that before it was reheated, remobilized and erupted, the temperature of the magma residing in the chamber was about 850°C. We ran simulations where convection is assumed to be low and heat transfer is mostly by conduction and simulations where convection is assumed to be vigorous enough to rapidly cool the magma chamber to 850°C. In both cases, magma chamber growth over the last 350 years results in tomography anomalies that are too strong, unless the magma was emplaced at an unlikely low melt fraction (<0·5). Good fits between the modelled and the observed velocity anomaly were obtained with sills 2–5 km in radius emplaced over 6000–150 000 years, depending on the temperature and melt fraction of the emplaced magma. Because of a trade-off between intrusion dimensions and emplacement durations, the volumetric magma fluxes are restricted to 7 × 10−4 and 5 × 10−3 km3 a−1. The velocity anomaly can be reproduced with a chamber containing high melt-fraction magma or with a mush of crystals and melt. The range of magma ages in the modelled magma chamber is much wider than the crystal residence time of the erupted andesite. This suggests that the eruption taps small pockets of recently assembled magma and that the velocity anomaly is mostly due to a non-eruptible mush.
It is widely believed that andesitic magmas erupted at arc‐volcanoes are stored in shallow reservoirs prior to eruption, but high‐resolution images of focused regions of magma in the shallow crust are rare. We integrate seismic tomography with numerical models of magma chamber growth to constrain the magma chamber beneath Soufrière Hills Volcano, Montserrat. Our approach reveals the characteristics and dynamics of the magmatic system with a level of detail that no single method has yet achieved. The integrated analysis suggests that a magma chamber of 13 km 3 with over 30% melt fraction formed between 5.5 and at least 7.5 km depth, a significantly higher melt fraction than inferred from the seismic data alone. The magma chamber may have formed by incremental sill intrusion over a few thousand years and is likely to be a transient, geologically short‐lived feature. These volume and geometry estimates are critical parameters to model eruption dynamics, which in turn are key to hazard assessment and eruption forecasting.
Abstract Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km 3 . Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.
Noritic anorthosite, gabbroic anorthosite and hornblende‐gabbro xenoliths are ubiquitous in the host andesite at Montserrat. Other xenoliths include quartz diorite, metamorphosed biotite‐gabbro, plagioclase‐hornblendite and plagioclase‐clinopyroxenite. Mineral compositions suggest a majority of the xenoliths are cognate. Cumulate, hypabyssal and crescumulate textures are present. A majority of the xenoliths are estimated to have seismic velocities of 6.7–7.0 km/s for pore‐free assemblages. These estimates are used in conjunction with petrological models to constrain the SEA CALIPSO seismic data and the structure of the crust beneath Montserrat. Andesitic upper crust is interpreted to overlie a lower crust dominated by amphibole and plagioclase. Xenolith textures and seismic data indicate the presence of hypabyssal intrusions in the shallow crust. The structure of the crust is consistent with petrological models indicating that fractionation is the dominant process producing andesite at Montserrat.