We present the mechanics of folding surface-layer wrinkles on a soft substrate, i.e. inter-touching of neighbouring wrinkle surfaces without forming a cusp. Upon laterally compressing a stiff layer attached on a finite-elastic substrate, certain material nonlinearities trigger a number of bifurcation processes to form multi-mode wrinkle clusters. Some of these clusters eventually develop into folded wrinkles. The first bifurcation of the multi-mode wrinkles is investigated by a perturbation analysis of the surface-layer buckling on a pre-stretched neo-Hookean substrate. The post-buckling equilibrium configurations of the wrinkles are then trailed experimentally and computationally until the wrinkles are folded. The folding process is observed at various stages of wrinkling, by sectioning 20–80 nm thick gold films deposited on a polydimethylsiloxane substrate at a stretch ratio of 2.1. Comparison between the experimental observation and the finite-element analysis shows that the Ogden model deformation of the substrate coupled with asymmetric bending of the film predicts the folding process closely. In contrast, if the bending stiffness of the film is symmetric or the substrate follows the neo-Hookean behaviour, then the wrinkles are hardly folded. The wrinkle folding is applicable to construction of long parallel nano/micro-channels and control of exposing functional surface areas.
A stiff skin forms on surface areas of a flat polydimethylsiloxane (PDMS) upon exposure to focused ion beam (FIB) leading to ordered surface wrinkles. By controlling the FIB fluence and area of exposure of the PDMS, one can create a variety of patterns in the wavelengths in the micrometer to submicrometer range, from simple one-dimensional wrinkles to peculiar and complex hierarchical nested wrinkles. Examination of the chemical composition of the exposed PDMS reveals that the stiff skin resembles amorphous silica. Moreover, upon formation, the stiff skin tends to expand in the direction perpendicular to the direction of ion beam irradiation. The consequent mismatch strain between the stiff skin and the PDMS substrate buckles the skin, forming the wrinkle patterns. The induced strains in the stiff skin are estimated by measuring the surface length in the buckled state. Estimates of the thickness and stiffness of the stiffened surface layer are estimated by using the theory for buckled films on compliant substrates. The method provides an effective and inexpensive technique to create wrinkled hard skin patterns on surfaces of polymers for various applications.
As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.
Soft shields are required to protect the human body during a radioactive accident. However, the modulus of most soft shields, such as HDPE and epoxy, is high, thereby making it difficult to process them in wearable forms like gloves and clothes. We synthesized a soft shield based on a hydrogel that is very compliant, stretchable, and biocompatible. The shields were fabricated by integrating γ-ray-shield particles into hydrogels with an interpenetrating network. The soft shields containing 3.33 M of PbO2 exhibited a high attenuation coefficient (0.284 cm-1) and were stretched to 400% without a rupture. Furthermore, the fabricated soft shield can be sewn without a fabric support due to its high energy-dispersion ability. A wearable arm shield for the γ-ray radiation was demonstrated using a direct sewing of the soft-shield materials.
Self-healing ability of materials, particularly polymers, improves their functional stabilities and lifespan. To date, the designs for self-healable polymers have relied on specific intermolecular interactions or chemistries. We report a design methodology for self-healable polymers based on glass transition. Statistical copolymer series of two monomers with different glass transition temperatures (
With the growing risk of radiation exposure, there are growing interests in radiation shielding. Because most radiation shields are made from heavy metals, a need to develop a soft shield is raised to protect human body. However, because the shield can easily undergo a mechanical damage by an impact, it would be better to have self-repairing system in the shield. Here, we have fabricated an intrinsic self-healable soft shield for gamma ray by making acrylamide based hydrogel composite. The composite contains lead dioxide nanoparticles for gamma ray shielding and Laponite clays for self-repairing. Although the hydrogel contained a large amount of lead dioxide nanoparticles (3.23 M), the fabricated composites stretched beyond 1400% while showing a high attenuation coefficient of 0.1343 cm
Human-machine interfaces have benefited from the advent of wireless sensor networks and the internet of things, but rely on wearable/attachable electronics exhibiting stretchability, biocompatibility, and transmittance. Limited by weight and volume, wearable devices should be energy efficient and even self-powered. Here, we report practical approaches for obtaining a stably self-cleanable, transparent and attachable ionic communicator based on triboelectric nanogenerators. The communicator can be easily applied on human skin due to softness and chemically anchored robust layers. It functions as a means of real-time communication between humans and machines. Surface functionalization on the communicator by (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane improves sensitivity and makes the communicator electrically and optically stable due to the self-cleaning effect without sacrificing transmittance. This research may benefit the potential development of attachable ionics, self-powered sensor networks, and monitoring systems for biomechanical motion.
Abstract Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains on a polyimide (PI) substrate. The columnar grown copper films (CGC films) were deposited by regulating radio frequency (RF) sputtering powers. CGC films were able to sustain their electrical conductivity at strains above 100%. Instead of ultimate electrical discontinuity by channel crack propagation, CGC films maintained their conductivity by forming ligament structures, or a ‘conductive net,’ through trapped micro-cracks. XRD, AFM and in situ SEM analysis were used to investigate these stretchable conductors.