Abstract Tin is a key strategic metal and indispensable in the high-tech industry. Constraining the source of the mineralizing fluids, their pathways, and subsequent ore-forming process is fundamental to optimizing tin exploration and efficient mining operations. Here, we present trace element analysis, LAICP-MS mapping, and the first systematic high-precision in situ Sn isotope analysis of cassiterite from several tin deposits (i.e., Weilasituo, Baiyinchagan, Maodeng Sn-polymetallic deposits) in northeast China using UV-fs-LA-ICP-MS. We show that the distribution of trace elements in cassiterite from these localities reflects crystallization under disequilibrium conditions with coexisting fluids or melts, and it suggests intense fluid-rock reactions. Among the three deposits, cassiterite from the Maodeng Sn-Cu deposit has the heaviest weighted mean Sn isotope composition, with δ124/117Sn values ranging from 0.11 ± 0.04‰ to 0.62 ± 0.08‰. The Baiyinchagan Sn-Ag-Pb-Zn deposit displays the lightest isotope composition with δ124/117Sn values ranging from –1.43 ± 0.06‰ to –0.50 ± 0.04‰. While the Weilasituo Sn-W-Li-polymetallic deposit shows the largest spread in δ124/117Sn values, ranging from –0.66 ± 0.05‰ to 0.59 ± 0.03‰. The Sn isotope variability in these natural cassiterites is attributed to Sn isotope fractionation associated with the diversity of Sn mineralization pathways and different physicochemical conditions. Furthermore, the δ124/117Sn values of cassiterite from the Maodeng and Baiyinchagan deposits gradually decrease from early to late mineralization stages, suggesting that they were generated by Rayleigh fractionation during progressive mineral precipitation from a hydrothermal fluid. In contrast, heavy Sn isotope values in late-stage Weilasituo cassiterites are likely a result of disequilibrium fluid-rock interaction with external, wall-rock-derived fluids. Our results reveal that liquid-vapor partitioning or fluid-rock interaction may have more influence on Sn isotope fractionation between cassiterite and evolving ore-forming fluids than do magmatic differentiation, pH, pressure, and temperature during the formation of tin deposits. According to the tin isotopic data obtained so far from this study and published previously, we observe no relationship between the Sn isotope composition of cassiterite and the age of mineralization or tectonic setting. However, cassiterite displays heavier Sn isotope compositions than coexisting stannite (Cu2FeSnS4) regardless of the deposit type and depth of emplacement, suggesting that the redox state may influence Sn isotope fractionation. More importantly, we first recognize a general shift toward light Sn isotope compositions in cassiterite associated with decreasing Ti/Zr ratios, suggesting that Sn isotopes can be a robust tool for identifying the source of the mineralization. Furthermore, based on our Sn isotope data together with previous studies of fluid inclusion, we propose that the dominant Sn(II) species occur in early ore mineralization systems, then shifts to the Sn(IV) species in late stage due to redox change or higher Cl– activity. Tin isotopes may be a robust tool to trace the mineralization center and fluid pathways and to ascertain the mechanisms of metal precipitation.
Granite-related hydrothermal Sn deposits are commonly expected to contain little or no Cu because Cu and Sn have markedly different geochemical properties. However, examples of Sn deposits rich in Cu are well-known in many Sn belts worldwide. So far, the magmatic processes of ore-related rocks and genesis of Cu-rich Sn deposits remain controversial. The newly discovered Yuanlinzi Sn-Cu deposit is located in the southern Great Xing'an Range (SGXR), Northeast China. It is a typical Cu-rich Sn deposit in the SGXR. This contribution reports new cassiterite and zircon U-Pb ages, geochemical compositions, and Sr-Nd isotopic data for the granitoids in the Yuanlinzi deposit to decipher the genesis of Cu-rich Sn deposit. Cassiterite U-Pb dating reveals that the Sn mineralization at Yuanlinzi was formed at ∼ 138 Ma. Zircon U-Pb dating of the granitoids yielded two age clusters: Early Triassic (247.6–246.3 Ma) for the granodiorite, and Early Cretaceous (145.3–141.9 Ma) for the granites, including K-feldspar granite (145.3 ± 0.5 Ma), granite porphyry (143.6 ± 0.9 Ma), fine-grained granite (142.8 ± 1.1 Ma) and albite granite (141.9 ± 1.3 Ma). The Early Cretaceous granites have geochemical affinities for A-type granites, for example, A/CNK = 0.98–1.07, high TFeO/(TFeO + MgO) ratios, total alkali (Na2O + K2O), and Ga/Al ratios. The Early Triassic granodiorite have relatively low (87Sr/86Sr)i values of 0.7034–0.7041, whereas the Early Cretaceous granite has slightly variable and higher (87Sr/86Sr)i values, varying from 0.7020 to 0.7065. The Early Triassic granodiorite and Early Cretaceous granites have similar bulk-rock εNd (t) values and TDM2 ages, ranging from + 1.89 to + 3.53 and 732 to 845 Ma, respectively. The geochemical data and Sr-Nd isotopes indicate that the Early Cretaceous granites were derived from partial melting of the juvenile middle-upper crust. This study further suggests that the 145.3–141.9 Ma granites are associated with back-arc extension environment during the low-angle subduction of Paleo-Pacific plate. In addition, the whole-rock and zircon compositions show that the Cu-Sn magma is characterized by relatively oxidized and less evolved features compared to the Cu-poor Sn deposits in the region. The rapid increase of oxygen fugacity of the latest episode of the Early Cretaceous magma is supposed to have initiated by the injection of mafic magma, which supported the Cu source for the deposit. Our studies suggest that the Cu-bearing mafic magma/fluid injection plays a key role on the formation of Cu-rich Sn deposit.
Shihuiyao is a typical granite-type Ta-Nb deposit in the southern Great Xing'an Range (SGXR), Northeast China. The ore field is comprised of several granitic intrusions that were emplaced into the Early Permian Linxi Formation during the Late Jurassic (ca. 145 ∼ 150 Ma). The main Ta-Nb mineralization (stage 1–2) is found within the leucogranite, with minor identified in the porphyritic granite in the deposit. Four distinct stages in the metallogenic process can be identified: weakly mineralized magmatic stage (stage 1), strongly mineralized magmatic stage (stage 2), post-magmatic hydrothermal stage (stage 3) and low-temperature hydrothermal stage (stage 4). Cassiterite samples collected from stage 2 were dated to be 147 ± 3.5 Ma and 147.7 ± 1.9 Ma, providing evidence for the latest Jurassic Ta-Nb metallogenic event at Shihuiyao. To acquire a more profound comprehension of the properties and behaviors of the fluids, fluid inclusions within quartz, albite, amazonite and fluorite were analyzed among all stages. The results showed that the Shihuiyao fluid inclusions were relatively homogeneous and predominantly comprised liquid-rich inclusions, with occasional occurrences of CO2-type, vapor-rich type, and solid-type inclusions. From stage 1 to stage 4, the temperature of the ore-forming fluids decreased gradually, while the salinity showed increasing during stage 4, which indicates a possible contribution from surrounding strata sourced fluids. Raman analysis of the inclusions at each stage revealed that the vapor components were primarily H2O, CO2, and CH4, with additional N2 and CH4 appearing in the late stage, pointing to mixing between the metallogenic fluids and the surrounding strata source materials. Notably, the simultaneous occurrence of liquid-rich and solid-type inclusions under low pressure conditions (0.6 ∼ 1.5 km) in the early ore-forming stage (stages 1–2) suggests a fluid boiling process. We argue that the fluid boiling and rapid chemical quenching of the granitic melt play a crucial role in changing the physicochemical conditions of the ore-forming fluids, ultimately resulting in the enrichment and precipitation of niobium and tantalum. The fluid mixing and intense water–rock interaction in the late stages (stages 3–4) may have also contributed to the minor mineralization. Drawing upon our investigations utilizing petrographic features and composition analysis of individual fluid inclusions, we have prognosticated on the Sn mineralization potential within the Shihuiyao deposit. Our results indicate the Shihuiyao granites are comparable to the tin granites worldwide. Genesis of cassiterites is linked to both magmatic and hydrothermal processes, exsolution from tin-rich fluids (up to 233 ppm) and interaction with country rocks attribute to the probable economic tin mineralization. Consequently, the Shihuiyao deposit has been noteworthy prospectively for further tin mineralization.
Primary tin deposits usually contain little or no copper due to the distinct geochemistry of Sn and Cu. However, examples of copper-rich tin deposits in many tin provinces around the world are also well known. The genesis of copper-rich tin deposits remains controversial. The Maodeng Sn-Cu polymetallic, a typical Cu-rich Sn deposit in the southern Great Xing'an Range (SGXR) Northeast China, offers an excellent opportunity to reveal the genesis of coupled copper-tin deposits. The ore mineralization is associated with the granite porphyry, complement phase of the Alubaogeshan complex, which emplaced into the volcanic rocks of the Lower Permian Dashizhai Formation. Herein, we report new zircon and cassiterite U-Pb ages and their trace elements compositions, with the aim of constraining the metallogenic chronology framework, and clarifying the indicative effects of the ore-forming fluids on mineralization in different ore-forming stages, and thus establishing the genetic model for the Sn-Cu deposit. LA-ICP-MS U-Pb dating of zircon from the granite porphyry yields a weighted mean U-Pb age of 134.6 ± 0.4 Ma, which consistent to the zircon U-Pb age (ca. 138 Ma) of porphyry monzogranite (main phase of the Alubaogeshan complex) and cassiterite U-Pb ages (137–140 Ma), suggesting an Early Cretaceous Sn-Cu mineralization under the Paleo-Pacific plate slab roll-back setting. Granite porphyry displays more evolved characterisrics, with higher SiO2 contents (71.5 ∼ 77.4 wt%), Rb/Sr ratios (3.39 ∼ 10.33) and lower Nb/Ta ratios (10.86 ∼ 13.06) compared to those of porphyry monzogranite (SiO2 contents of 70.4 ∼ 72.1 wt%; Rb/Sr and Nb/Ta ratios of 1.03 ∼ 1.72 and 13.34 ∼ 15.83, respectively). This is further supported by the trace elements contents of zircons from granite porphyry and porphyry monzogranite, because the former has a stronger Eu anomaly, higher Hf concentrations, lower Zr/Hf and Th/U ratios than the latter. Our new data, integrated with previously published geochemical data, suggest that the granites associated with Cu-rich Sn deposits are characterized by higher oxygen fugacity, lower differential degree and aluminum saturation index (ASI) than those of Sn-W deposits. This could also use to address the Sn-Cu deposits usually have relatively small Sn mineralization potential. The trace elements of the cassiterites are characterized by high Fe (up to 3358 ppm), Ti (up to 1894 ppm) and abnormal high In (∼2500 ppm) concentrations, but low Nb, Ta contents. From early to late stage, the W and U contents and Nb/Ta and Zr/Hf ratios are increased, reveal that the ore-forming process experienced the cooling, increasing volatile contents and fluid-rock reaction. Finally, a new metallogenic model was established, which highlight oxidized Cu-rich fluids exsolved from the upwelling mantle magma would add to the reduced, Sn-rich magma chambers. This contribution indicate that, the Cu and Sn metals come from the mantle magma and crustal granitic magma, respectively, and that Cu-rich Sn deposits are more likely a product of spatial coupling.