Emerald from the deposits at Poona shows micrometre-scale chemical, optical, and cathodoluminescence zonation. This zonation, combined with fluid inclusion and isotope studies, indicates early emerald precipitation from a single-phase saline fluid of approximately 12 weight percent NaCl equivalent, over the temperature range of 335–525 °C and pressures ranging from 70 to 400 MPa. The large range in pressure and temperature likely reflects some post entrapment changes and re-equilibration of oxygen isotopes. Secondary emerald-hosted fluid inclusions indicate subsequent emerald precipitation from higher salinity fluids. Likewise, the δ18O-δD of channel fluids extracted from Poona emerald is consistent with multiple origins yielding both igneous and metamorphic signatures. The combined multiple generations of emerald precipitation, different fluid compositions, and the presence of both metamorphic and igneous fluids trapped in emerald, likely indicate a protracted history of emerald precipitation at Poona conforming to both an igneous and a metamorphic origin at various times during regional lower amphibolite to greenschist facies metamorphism over the period ~2710–2660 Ma.
Abstract The B yrud emerald deposit comprises pegmatite veins hosted within C ambrian black shales and L ate C arboniferous quartz syenite sills intruded by a P ermo‐ T riassic riebeckite granite. The emerald deposit genesis is consistent with a typical granite‐related emerald vein system derived from dominantly magmatic fluids with minor contributions from metamorphic source(s). Muscovite from an emerald‐bearing pegmatite at B yrud yielded an excellent A r– A r plateau age of 233.4 ± 2.0 Ma. Emerald display colour zonation alternating between emerald and beryl. Two dominant fluid inclusions types are identified as follows: two‐phase (vapour+liquid) and three‐phase (brine+vapour+halite) fluid inclusions and these are interpreted to represent conjugate fluids of a boiling system. The emerald was precipitated from these saline fluids with approximate overall salinities on the order of 31 mass per cent N a C l equivalent. Raman analyses indicate molar gas fractions for CO 2 , N 2 , CH 4 and H 2 S are approximately 0.8974, 0.0261, 0.0354 and 0.0410, respectively. Formational temperatures and pressures of approximately 160–385°C and below 1000 bars were derived from fluid inclusion data and lithostatic pressure estimates from fluid inclusion studies within the O slo rift. The colour zonation observed in the B yrud emerald crystals is related to alternating emerald and beryl precipitation in the liquid and vapour portions, respectively, of a two‐phase (boiling) system.
Abstract Preliminary geological work on samples from Davdar in China indicate that emerald occurs in quartz veins hosted within upper greenschist grade Permian metasedimentary rocks including quartzite, marble, phyllite and schist. Fluid inclusion studies indicate highly saline fluids ranging from approximately 34 to 41 wt.% NaCl equivalent, with minimal amounts of CO 2 estimated at a mole fraction of 0.003. Fluid inclusion, stable isotope and petrographic studies indicate the Davdar emeralds crystallized from highly saline brines in greenschist facies conditions at a temperature of ∼350°C and a pressure of up to 160 MPa. The highly saline fluid inclusions in the emeralds, the trace-element chemistry and stable isotope signatures indicate that the Davdar emeralds have some similarities to the Khaltaro and Swat Valley emerald deposits in Pakistan, but they show the greatest similarity to neighbouring deposits at Panjshir in Afghanistan.
Abstract The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich ‘striped’ colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.
Emerald in the Mackenzie Mountains is hosted in extensional quartz–carbonate veins cutting organic-poor Neoproterozoic sandstones and siltstones within the hanging wall of a thrust fault that emplaced these strata above Paleozoic rocks. Isotopic compositions of water extracted from emerald are typical of evolved sedimentary sulphate brines. Fluid inclusion studies indicate two saline fluid populations: a CO 2 –N 2 -bearing, high-salinity brine (20.4–25.8 wt.% NaCl equivalent), and a gas-free, saline brine (7.6–15.3 wt.% NaCl equivalent). Both populations display evidence of post-entrapment volume changes. δ 18 O VSMOW (VSMOW, Vienna standard mean ocean water) values for emerald, quartz, and dolomite yield averages of 17.3‰ (±0.9), 19.6‰ (±1.5), and 18.1‰ (±1.0), respectively. Dolomite δ 13 C VPDB (VPDB, Vienna Pee Dee belemnite) averages –6.8‰ (±1.0). Two pyrite samples returned δ 34 S CDT (CDT, Cañon Diablo troilite) values of 5.1‰ and 11.2‰. Triply concordant mineral equilibration temperatures determined from mineral pair δ 18 O VSMOW equilibration (quartz–emerald, quartz–dolomite, emerald–dolomite) range from 380 to 415 °C. Depth calculations based on mineral pair isotope equilibration and typical geothermal gradient indicate vein formation at 6–11 km depth. A Re–Os isochron age of 345 ± 20 Ma from pyrite indicates that mineralization was contemporaneous with estimated ages of some northern Cordilleran Zn–Pb occurrences. Emerald mineralization resulted from inorganic thermochemical sulphate reduction via the circulation of warm basinal brines through siliciclastic, carbonate, and evaporitic rocks. These brines were driven along deep basement structures and reactivated normal faults during the development of a trans-tensional back-arc basin during the late Devonian to middle Mississippian. The Mountain River emerald occurrence thus represents a variant of the Colombian-type emerald deposit model requiring thermochemical sulphate reduction.