Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-μm fraction of Megacorer samples (0–1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200–500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology.
Approaches to measuring marine biological parameters remain almost as diverse as the researchers who measure them. However, understanding the patterns of diversity in ocean life over different temporal and geographic scales requires consistent data and information on the potential environmental drivers. As a group of marine scientists from different disciplines, we suggest a formalized, consistent framework of 20 biological, chemical, physical, and socioeconomic parameters that we consider the most important for describing environmental and biological variability. We call our proposed framework the General Ocean Survey and Sampling Iterative Protocol (GOSSIP). We hope that this framework will establish a consistent approach to data collection, enabling further collaboration between marine scientists from different disciplines to advance knowledge of the ocean (deep-sea and mesophotic coral ecosystems).
Abstract Benthic components of tropical mesophotic coral ecosystems (MCEs) are home to diverse fish assemblages, but the effect of multiscale spatial benthic characteristics on MCE fish is not well understood. To investigate the influence of fine‐scale benthic seascape structure and broad‐scale environmental characteristics on MCE fish, we surveyed fish assemblages in Seychelles at 30, 60 and 120 m depth using submersible video transects. Spatial pattern metrics from seascape ecology were applied to quantify fine‐scale benthic seascape composition, configuration and terrain morphology from structure‐from‐motion photogrammetry and multibeam echosounder bathymetry and to explore seascape–fish associations. Hierarchical clustering using fish abundance and biomass data identified four distinct assemblages separated by the depth and geographic location, but also significantly influenced by variations in fine‐scale seascape structure. Results further revealed variable responses of assemblage characteristics (fish biomass, abundance, trophic group richness, Shannon diversity) to seascape heterogeneity at different depths. Sites with steep slopes and high terrain complexity hosted higher fish abundance and biomass, with shallower fish assemblages (30–60 m) positively associated with aggregated patch mixtures of coral, rubble, sediment and macroalgae with variable patch shapes. Deeper fish assemblages (120 m) were positively associated with relief and structural complexity and local variability in the substratum and benthic cover. Our study demonstrates the potential of spatial pattern metrics quantifying benthic composition, configuration and terrain structure to delineate mesophotic fish–habitat associations. Furthermore, incorporating a finer‐scale perspective proved valuable to explain the compositional patterns of MCE fish assemblages. As developments in marine surveying and monitoring of MCEs continue, we suggest that future studies incorporating spatial pattern metrics with multiscale remotely sensed data can provide insights will that are both ecologically meaningful to fish and operationally relevant to conservation strategies.
Although our knowledge on the vast deep-sea biome has increased in recent decades, we still have a poor understanding of the processes regulating deep-sea diversity and assemblage composition, as well as their underlying natural variability in space and time. In the face of unprecedented anthropogenic impact on this environment, addressing this knowledge gap remains of paramount importance. In this thesis I focus on the effect of mesoscale (10s of kilometres) spatial heterogeneity, in the form of abyssal hills and surrounding abyssal plains, on benthic communities and specifically on foraminiferal faunas living at abyssal depths in the northeast Atlantic. ‘Live’ (Rose-Bengal-stained) and dead benthic foraminiferal assemblages, including rarely-studied soft-walled monothalamous species, were analysed based on a total of 16 Megacorer samples (0.25 cm2 surface area, 0-1 sediment horizon, >150 ?m sieve fraction) from five sites within the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO, NE Atlantic, ~4850 m water depth). Three sites were located on the tops of small abyssal hills (~200-500 m elevation) and two on the adjacent abyssal plain. The main results of this analysis include the following. (1) Description of new morphotypes of poorly known primitive benthic foraminifera associated with (i.e. sessile on) planktonic foraminiferal shells and mineral grains. Some of these forms were more common on the hills, while others were more common on the plain. (2) Agglutinated foraminifera selected particles of different sizes on the hills compared to the plain, which affected their test morphometry and visual appearance. Distinct hydrodynamic conditions, and consequently distinct sediment granulometric characteristics between the two settings (hills, plain) resulted in foraminifera on the hills having more coarsely agglutinating tests. This information could be useful in palaeoecological interpretations of the fossil record. (3) Live benthic foraminiferal assemblages were significantly influenced by seafloor topography. Abyssal hills had a higher species density compared to the plain, supported a distinct fauna, and therefore tended to increase regional diversity. Enhanced bottom-water flow on hills, which affects organic matter supply and local sedimentology, were proposed to be responsible for these differences. (4) During the transition from live to dead benthic foraminiferal faunas there was a significant loss of delicate agglutinated and organic-walled forms. Unlike ‘live’ assemblages, the composition of the dead assemblages was very similar in hill and plain settings, suggesting that it would not be possible for paleoceanographers to differentiate between fossil foraminiferal faunas originating from these topographically contrasting settings. In conclusion, this study highlighted the significant effect of hills on agglutination patterns, assemblage composition and regional diversity of living benthic foraminifera. Since abyssal hills are one of the most common landforms on Earth, their presence may substantially enhance abyssal biodiversity, with important implications of deep-sea ecosystem functioning.