Abstract The Corallian Beds beneath the Harwell Research Site, south Oxfordshire, are a highly variable sequence of sandstones, mudstones and limestones. The more permeable lithologies of the upper part of the sequence constitute an important local aquifer. Diagenetic and post-lithification processes have strongly influenced the porosity, permeability and mineralogy of the aquifer rocks. Calcite cementation reduced the porosity and permeability of the sandstones and limestones in the upper part of the aquifer. Cementation occurred in at least three stages ranging from early diagenesis to post-compactional diagenesis. Late-stage dissolution of calcite took place along fractures and bedding discontinuities, restoring the porosity and permeability of these sediments and developing secondary porosity and permeability where original clastic carbonate was removed. Invasion of the Corallian porewaters by waters charged with CO 2 is postulated as a mechanism by which calcite was removed. At the base of the aquifer, early diagenetic dissolution of biogenic silica created a high secondary porosity. Silica was reprecipitated in the dissolution voids and matrix as opal-CT. Authigenic smectite and zeolites are also associated with opal-CT. These phases are believed to have precipitated from pore-waters rich in ions derived from the alteration of volcanogenic detritus associated with the Corallian sediments.
Abstract. Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
The biogeochemical gradients that will develop across the interface between a highly alkaline cementitious geological disposal facility for intermediate level radioactive waste and the geosphere are poorly understood. In addition, there is a paucity of information about the microorganisms that may populate these environments and their role in biomineralization, gas consumption and generation, metal cycling, and on radionuclide speciation and solubility. In this study, we investigated the phylogenetic diversity of indigenous microbial communities and their potential for alkaline metal reduction in samples collected from a natural analogue for cementitious radioactive waste repositories, the hyperalkaline Allas Springs (pH up to 11.9), Troodos Mountains, Cyprus. The site is situated within an ophiolitic complex of ultrabasic rocks that are undergoing active low-temperature serpentinization, which results in hyperalkaline conditions. 16S rRNA cloning and sequencing showed that phylogenetically diverse microbial communities exist in this natural high pH environment, including Hydrogenophaga species. This indicates that alkali-tolerant hydrogen-oxidizing microorganisms could potentially colonize an alkaline geological repository, which is predicted to be rich in molecular H2, as a result of processes including steel corrosion and cellulose biodegradation within the wastes. Moreover, microbial metal reduction was confirmed at alkaline pH in this study by enrichment microcosms and by pure cultures of bacterial isolates affiliated to the Paenibacillus and Alkaliphilus genera. Overall, these data show that a diverse range of microbiological processes can occur in high pH environments, consistent with those expected during the geodisposal of intermediate level waste. Many of these, including gas metabolism and metal reduction, have clear implications for the long-term geological disposal of radioactive waste.
Abstract The Croker Carbonate Slabs, in the UK sector of the Irish Sea, has shallow (70 to 100 m) water, strong (> 2 knot) tidal currents, coarse mobile surficial sediments and the most extensive methane-derived authigenic carbonate (MDAC) known in European waters. Multi-disciplinary studies (2004 to 2015) were commissioned specifically to document the benthic habitat, and have resulted in the designation of this site as a Marine Protected Area (MPA) under the European Commission’s Habitats Directive as an example of “ Submarine structures formed by leaking gases ”. However, this paper is focussed on the geoscience aspects of the site: the mineralogy and isotopic composition of the MDAC, its formation and age. It considers the implications of these findings with respect to the timing of the deglaciation of the area since the Last Glacial Maximum (LGM), and the environmental implications of the seepage of methane from the site over a period of at least 17,000 years. Carbon isotope ratios (δ 13 C − 34 to − 54‰) confirm that the carbonate minerals (high-Mg calcite and aragonite) result from the anaerobic oxidation of methane. Widespread shallow gas within post-glacial sediments is sourced from underlying coal-bearing Carboniferous strata. Geophysical (side-scan sonar and multi-beam echo sounder) and visual surveys show that the MDAC occurs as isolated lumps, continuous pavements, and cliffs < 6 m tall, which post-date the post-glacial sediments, but are in places covered by a veneer of coarse mobile surficial sediments. U-Th dates (17,000 ± 5500 to 4000 ± 200 BP) suggest continual MDAC formation since the last glacial maximum, and constrain the postglacial sea level rise in this part of the Irish Sea; the site must have been submarine before MDAC formation started, whether or not methane was escaping. Visual and acoustic evidence of gas seepage is limited, but methane concentrations in the water are high (< 21.4 nmol l −1 ) and suggest present-day export to the atmosphere. It is also implied that significant methane release to the atmosphere occurred immediately after the retreat of the ice that covered the site during the LGM until 21.9 to 20.7 ka BP.
This study has focused on the paragenetic sequence, and variation in rare earth elements with yttrium (REY) composition, of fracture-filling calcite in the Toki Granite in the Mizunami area, central Japan. The morphological, chemical, and isotopic characteristics of the calcite and chemistry of fluid inclusions reveal that the calcite in the Toki Granite can be differentiated into four discrete generations: Calcite I (oldest) to Calcite IV (most recent). The precipitation history of calcite reflects the changes in the hydrogeochemical regime of paleo-groundwaters, controlled by the evolution of groundwater by seawater infiltration associated with marine transgression and surface water infiltration associated with marine regression and uplift. The post-Archean average shale-normalized REY patterns in each generation of calcite show no significant Ce anomaly, negative Eu anomaly, and a light REY (LREY)-depleted pattern dominates. These features are also common to the Toki Granite. The consistency of the features in each generation of calcite indicates that REY was supplied from the Toki Granite by water-rock interaction. The lack of a Ce anomaly in the calcite demonstrates that groundwaters have maintained reducing conditions during the calcite precipitation. However, the fractionation of LREY and heavy REY in each generation of the calcite is more pronounced than in the granite. The fractionation process in the paleo-groundwaters from which each generation of calcite precipitated closely relates to the systematic variation of carbonate complex in the REY series and/or pH in palaeo-groundwater. The findings of this study will be important for assessing the long-term safety of geological disposal of high-level radioactive waste.