Seagrass is an essential component of coastal ecosystems because of its capability to absorb blue carbon, and its involvement in sustaining marine biodiversity. In this study, support vector machine (SVM) technologies with corrected satellite imagery data, were applied to identify the distribution of seagrasses. Observations of seagrasses from satellite imagery were obtained using GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satellite imagery. The satellite imagery from Google Earth has been obtained at a very high resolution, and was to be used within both the training and testing of a classification method. The optical satellite imagery must be processed for image classification, throughout which radiometric correction, sunglint, and water column adjustments were applied. We restricted the scope of the study area to a maximum depth of 10 m due to the fact that light does not penetrate beyond this level. When classifying the distribution of seagrasses present in the research region, the recently developed SVM technique achieved overall accuracy values of up to 92% (GeoEye-1), 88% (Sentinel-2 MSI level 1C), and 83% (Landsat-8 OLI), respectively. The results of the overall accuracy values are also used to evaluate classification models.
Because of fast-paced industrialization, urbanization, and population growth in Indonesia, there are serious health issues in the country resulting from air pollution. This study uses geospatial modelling technologies, namely land-use regression (LUR), geographically weighted regression (GWR), and geographic and temporal weighted regression (GTWR) models, to assess variations in particulate matter (PM10) and nitrogen dioxide (NO2) concentrations in Surabaya City, Indonesia. This is the first study to implement spatiotemporal variability of air pollution concentrations in Surabaya City, Indonesia. To develop the prediction models, air pollution data collected from seven monitoring stations from 2010 to 2018 were used as dependent variables, while land-use/land cover allocations within a 250 m to 5000 m circular buffer range surrounding the monitoring stations were collected as independent variables. A supervised stepwise variable selection procedure was applied to identify the important predictor variables for developing the LUR, GWR, and GTWR models. The developed models of LUR, GWR, and GTWR accounted for 49%, 50%, and 51% of PM10 variations and 46%, 47%, and 48% of NO2 variations, respectively. The GTWR model performed better (R2 = 0.51 for PM10 and 0.48 for NO2) than the other two models (R2 = 0.49–0.50 for PM10 and 0.46–0.47 for NO2), LUR and GWR. In the PM10 model four predictor variables, public facility, industry and warehousing, paddy field, and normalized difference vegetation index (NDVI), were selected during the variable selection procedure. Meanwhile, paddy field, residential area, rainfall, and temperature played important roles in explaining NO2 variations. Because of biomass burning issues in South Asia, the paddy field, which has a positive correlation with PM10 and NO2, was selected as a predictor. By using long-term monitoring data to establish prediction models, this model may better depict PM10 and NO2 concentration variations within areas across Asia.