The geology of the Kvanefjeld region in the Ilimaussaq intrusive complex is reviewed with special emphasis on intrusive mechanism and on the spatial distribution of rock units before the intrusion of the lujavrite. The lujavrite was emplaced by permissive intrusion, and subsidence of blocks of the older rocks derived from the roof of supracrustals, gabbro, and from the earlier syenites of llimaussaq, took place extensively. It is argued that the present level of erosion in the K vanefjeld area is about 300 m below the roof of the intrusion. The early augite syenite and alkali syenite in the southern and central part of K vanefjeld are believed to be close to their original position as a large raft in the naujaite. The northern limit of the augite syenite intrusion was probably close to the present limit of the augite syenite. The origin of the marginal deformation zones in the country rock xenoliths is discussed and it is proposed that the deformed zones represent early shear zones and joints which were heated and metasomatically altered before the intrusion of the. lujavrite. The ultimate shearing and deformation occurred during the collapse of the roof when the bulk of the lujavrite was intruded.
Abstract The nature and evolution of Earth’s crust during the Hadean and Eoarchean is largely unknown owing to a paucity of material preserved from this period. However, clues may be found in the chemical composition of refractory minerals that initially grew in primordial material but were subsequently incorporated into younger rocks and sediment during lithospheric reworking. Here we report Hf isotopic data in 3.9 to 1.8 billion year old detrital zircon from modern stream sediment samples from West Greenland, which document successive reworking of felsic Hadean-to-Eoarchean crust during subsequent periods of magmatism. Combined with global zircon Hf data, we show a planetary shift towards, on average, more juvenile Hf values 3.2 to 3.0 billion years ago. This crustal rejuvenation was coincident with peak mantle potential temperatures that imply greater degrees of mantle melting and injection of hot mafic-ultramafic magmas into older Hadean-to-Eoarchean felsic crust at this time. Given the repeated recognition of felsic Hadean-to-Eoarchean diluted signatures, ancient crust appears to have acted as buoyant life-rafts with enhanced preservation-potential that facilitated later rapid crustal growth during the Meso-and-Neoarchean.
The Mesoarchean Akia Terrane in West Greenland contains a detailed magmatic and metamorphic mineral growth record from 3.2 Ga to at least c. 2.5 Ga. This time span makes this region an important case study in the quest to track secular changes in geodynamic style which may ultimately inform on the development of plate tectonics as a globally linked system of lateral rigid plate motions. The common accessory mineral titanite has recently become recognised as a powerful high temperature geochronometer whose chemistry may chart the thermal conditions of its growth. Furthermore, titanite offers the potential to record the time-temperature history of mafic lithologies, which may lack zircon. Although titanite suffers from higher levels of common Pb than many other UPb chronometers, we show how measurement of 207Pb/206Pb in texturally coeval biotite may assist in the characterization of the appropriate common Pb composition in titanite. Titanite extracted from two samples of mafic gneisses from the Akia Terrane both yield UPb ages of c. 2.54 Ga. Although coeval, their chemistry implies growth under two distinctly different processes. In one case, the titanite has elevated total REE, high Th/U and grew from an in-situ partial melt, consistent with an identical date to granite dyke zircon. In contrast, the second titanite sample contains greater common Pb, lower total REE, lower Th/U, and grew from dominantly hydrothermal fluids. Zr-in-titanite thermometry for partial melt-derived titanite, with activities constrained by phase equilibrium modelling, indicates maxima of c. 690 °C. Elsewhere in the Akia Terrane, coeval metamorphism linked to growth of hydrothermal titanite is estimated at temperatures of c. 670 °C. These new results when coupled with existing findings indicate punctuated, repeated metamorphic events in the Akia Terrane, in which high temperature conditions (re)occurred at least three times between 3.0 and 2.5 Ga, but crucially changed in style across a c. 3.0 Ga change point. We interpret this change in metamorphism as reflecting a fundamental shift in geodynamic style in West Greenland at 3.0 Ga, consistent with other estimates for the onset of widespread plate tectonic-type processes.
The alkaline province of southern West Greenland includes swarms of dykes described as kimberlites and lamproites (Larsen 1991), and these rock types are widely distributed in the Sisimiut–Sarfartoq–Kangerlussuaq region (Figs 1, 2). Kimberlites and lamproites are potential carriers of diamond, and since the description of the Sarfartoq carbonatite complex and the kimberlitic dykes related to this complex (Larsen 1980; Secher & Larsen 1980), the Sisimiut–Sarfartoq–Kangerlussuaq region has seen several campaigns of commercial diamond exploration. The latest and most persistent stage of exploration began in the mid-1990s and has continued to date, with varying intensity. Numerous reports of diamond-favourable indicator minerals from till sampling, finds of kimberlitic dykes, and recovery of actual diamonds from kimberlitic rocks have emerged since 1995 (Olsen et al. 1999). A drilling programme in late 2001 confirmed the unusually great length and width of a magnetic kimberlitic dyke (Ferguson 2001).
Geochemical mapping based on low density sampling and analysis ofstream sediment and stream water is part of the mineral resources evaluation programme undertaken by the Geological Survey of Greenland (Steenfelt 1987a, b). In the field season of 1986 two areas were sampled, the inner Disko Bugt region (1:250000 map sheet 69 V.2 and part of 70 V.2), and the Godthåb region (map sheets 64 V.1 and 64 V.2).