Fractures in Earth's critical zone influence groundwater flow and storage and promote chemical weathering. Fractured materials are difficult to characterize on large spatial scales because they contain fractures that span a range of sizes, have complex spatial distributions, and are often inaccessible. Therefore, geophysical characterizations of the critical zone depend on the scale of measurements and on the response of the medium to impulses at that scale. Using P-wave velocities collected at two scales, we show that seismic velocities in the fractured bedrock layer of the critical zone are scale-dependent. The smaller-scale velocities, derived from sonic logs with a dominant wavelength of ~0.3 m, show substantial vertical and lateral heterogeneity in the fractured rock, with sonic velocities varying by 2,000 m/s over short lateral distances (~20 m), indicating strong spatial variations in fracture density. In contrast, the larger-scale velocities, derived from seismic refraction surveys with a dominant wavelength of ~50 m, are notably slower than the sonic velocities (a difference of ~3,000 m/s) and lack lateral heterogeneity. We show that this discrepancy is a consequence of contrasting measurement scales between the two methods; in other words, the contrast is not an artifact but rather information—the signature of a fractured medium (weathered/fractured bedrock) when probed at vastly different scales. We explore the sample volumes of each measurement and show that surface refraction velocities provide reliable estimates of critical zone thickness but are relatively insensitive to lateral changes in fracture density at scales of a few tens of meters. At depth, converging refraction and sonic velocities likely indicate the top of unweathered bedrock, indicative of material with similar fracture density across scales.
The Aboriginal population of the Aṉangu Pitjantjatjara Yankunytjatjara (APY) lands in South Australia is dependent on groundwater for nearly all water needs. In that region, placement of wells in productive aquifers of appropriate water quality is challenging because of lack of hydrologic data and variable aquifer properties. It is desirable to have an improved ability to identify and evaluate groundwater resources in this remote region with cost-effective methods that make minimal impact on the environment. A project supported by the Society of Exploration Geophysicists program Geoscientists Without Borders tested a combined geophysical approach with airborne and ground-based data sets to locate a potential aquifer, confirm water content, and estimate the subsurface extent of the water-bearing zone. This hydrogeophysical approach was an effective means for exploration and evaluation of groundwater resources in APY lands generally, and it characterized a specific aquifer as a case study.
Abstract In high‐mountain watersheds, the critical zone holds crucial life‐sustaining water stores in the form of shallow groundwater aquifers. To better understand the role that the critical zone plays in moderating hydrologic response to fluxes at the surface and in the subsurface, the hydrologic properties must be characterized over large scales (i.e., that of the watershed). In this study, we estimate porosity from geophysical measurements across a 58‐ha area to depths of ~80 m. Our observations include velocities from seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples acquired by push coring. We use a petrophysical approach by combining two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, into a Bayesian inversion. The inverted geophysical porosities show a positive correlation with measured values ( R 2 = 0.93). We extrapolate the porosity estimates from 30 individual seismic refraction lines to a 3D volume below our study area using ordinary kriging to quantify the water holding capacity of our study area. Our results reveal that the critical zone in our study area holds ~2.9 × 10 6 ± 9.6 × 10 5 m 3 of water, where 34% of this storage is in the saprolite, 55% is in the fractured rock, and the remaining 11% is in the bedrock.
Old mine workings present both physical and environmental hazards. Detecting and locating tunnels and voids can be an important but extremely difficult problem in many remediation projects. The targets are often small (∼2 m in width) and located deep in the surface (hundreds of meters). The subsurface nature of these old mining sites is generally complex and variable, containing faults, fractures, multiple rock types and altered zones. For this application, geophysicists find themselves facing the daunting task of trying to pick targets hundreds of meters deep with meter scale accuracy. Furthermore, it is often important to locate a specific, deep, tunnel; old mine sites are often riddled with tunnels at multiple levels. In previous work the authors showed the successful use of surface Mise-a-la-Masse (MALM) and cross-hole electrical resistivity tomography (ERT) to successfully locate voids at the site of the former Captain Jack Mine near Ward, Colorado. Recent work at the site has provided additional insight into the use of these technologies and shown the promise of a relatively new method, borehole magnetometric resistivity (BMR) at delineating and locating tunnels. The new technique has the advantage of providing an estimated direction and distance to a tunnel and approximate strike direction of the tunnel all from a single dry or water filled borehole.
Abstract Poisson's ratio for earth materials is usually assumed to be positive (V p /V s > 1.4). However, this assumption may not be valid in the critical zone because near Earth's surface effective pressures are low (<1 MPa), porosity has a wide range (0%–60%), there are significant texture changes (e.g., unconsolidated vs. fractured media), and saturation ranges from 0% to 100%. We present P‐wave (V p ) and S‐wave (V s ) velocities from seismic refraction profiles collected in weathered crystalline environments in South Carolina and Wyoming. Our data show that ∼20% of the subsurface has negative Poisson's ratios (V p /V s values < 1.4), a conclusion supported by borehole sonic logs. The low V p /V s values are confined to the fractured bedrock and saprolite. Our data support the hypothesis that weathering‐generated microcracks can produce a negative Poisson's ratio and that V p /V s values can thus provide insight into important critical zone weathering processes.
Physical, chemical, and biological processes create and maintain the critical zone (CZ). In weathered and crystalline rocks, these processes occur over 10–100 s of meters and transform bedrock into soil. The CZ provides pore space and flow paths for groundwater, supplies nutrients for ecosystems, and provides the foundation for life. Vegetation in the aboveground CZ depends on these components and actively mediates Earth system processes like evapotranspiration, nutrient and water cycling, and hill slope erosion. Therefore, the vertical and lateral extent of the CZ can provide insight into the important chemical and physical processes that link life on the surface with geology 10–100 s meters below. In this study, we present 3.9 km of seismic refraction data in a weathered and crystalline granite in the Laramie Range, Wyoming. The refraction data were collected to investigate two ridges with clear contrasts in vegetation and slope. Given the large contrasts in slope, aspect, and vegetation cover, we expected large differences in CZ structure. However, our results suggest no significant differences in large-scale (>10 s of m) CZ structure as a function of slope or aspect. Our data appears to suggest a relationship between LiDAR-derived canopy height and depth to fractured bedrock where the tallest trees are located over regions with the shallowest depth to fractured bedrock. After separating our data by the presence or lack of vegetation, higher P-wave velocities under vegetation is likely a result of higher saturation.