The Southern Breccia metasomatic uranium (U) showings are located 1 km south of the NICO deposit, an iron oxide-copper-gold (IOCG) deposit, in the Great Bear magmatic zone of Canada. The timing of both occurrences is tightly constrained to 1873–1868 Ma, linking formation of the albitite-hosted U to development of IOCG mineralization. During this period, regional iron oxide and alkali-calcic metasomatism formed: Na (albite), high-temperature Ca-Fe (amphibole + magnetite), high-temperature Ca-K-Fe (amphibole + magnetite + biotite ± K-feldspar), high-temperature K-Fe (K-feldspar/biotite + magnetite), K (K-feldspar ± biotite), and low-temperature K-Fe-Mg (K-feldspar + hematite + chlorite) assemblages. Primary uraninite and brannerite occur within high-temperature K-Fe alteration composed of magnetite + K-feldspar ± biotite-cemented breccias developed in earlier albitite. The chemistry of primary uraninite supports precipitation from high-temperature, magmatic-derived fluids, as previously proposed for the NICO deposit. Field relationships, petrography, whole-rock geochemistry, and geochronology indicate that alteration of the Southern Breccia corridor host rocks was coeval with early alteration at NICO, whereas U mineralization postdated Au-Co-Bi at NICO. The linkage of the Southern Breccia to the regional iron-oxide and alkali-calcic alteration system that generated the NICO deposit presents a new driver for formation of albitite-hosted U deposits and highlights an exploration target in IOCG districts globally.
Abstract Aluminum phosphate sulfate (APS) minerals associated with the Athabasca Basin are compositionally part of the alunite group. Typically 5–20 μm in size, they accompany the regional diagenetic-hydrothermal illite-kaolinite-dickite assemblage in the Athabasca Group sandstones, the illite-sudoite assemblage of the altered paleo-regolith, and alteration zones surrounding uranium deposits. In the vicinity of the Centennial deposit, where illite and sudoite replace coarse-grained aluminosilicate porphyroblasts in the basement phyllitic pelites, cubic APS crystals are as large as 80 μm. Detailed petrography indicates that the APS crystals form broadly coeval to illite. Backscattered electron imaging, elemental mapping, and compositional analysis reveal complex zoning as well as later hydrothermal alteration of the APS crystals. Growth-zoned crystals are a solid solution between crandallite-goyazite-svanbergite [Sr 0.17–0.32 Ca 0.0.18–0.28 LREE 0.0.25–0.46 (Al 2.78–2.92 Fe 0.01–014 )(PO 4 ) 1.82–2.03 (SO 4 ) 0.14–0.35 (OH) 6 ], whereas the later alteration of the APS minerals results in a compositional shift to endmember florencite [Sr 0.15 Ca 0.11 LREE 0.57 (Al 2.86 Fe 0.02 )(PO 4 ) 1.98 (SO 4 ) 0.15 (OH) 6 ]. Fluids responsible for the alteration of APS to florencite are paragenetically linked to late hydrothermal fluids associated with mafic Mackenzie dikes and do not appear to be related to proximity to uranium mineralization. Both zoned and altered portions of the crystals have bulk compositions that overlap with APS minerals in other areas of the basin suggesting a common genetic origin. However, it is critical to link the paragenetic context to observed compositional changes. An increase in MREE from early to late stages of zoned crystal growth correlates with the greatest concentration of REE found in uraninite from unconformity-related uranium deposits. This could be a link between broader APS growth and uraninite precipitation.
This paper documents element mobility patterns from a magnetite-group Iron Oxide Copper–Gold (IOCG) prospect in the Northwest Territories of Canada and explores implications for space–time chemical evolution of metasomatic systems hosting IOCG deposits. The Fab system, located in the Great Bear magmatic zone (GBMZ) of the Northwest Territories, Canada, contains numerous Fe–Cu–U showings associated with high temperature (HT) potassic–iron alteration overprinting extensive zones of sodic to HT calcic–iron alteration. Each hydrothermal alteration assemblage is associated with distinct element mobility patterns that record evolving physico-chemical properties of the hydrothermal fluids. New geochronological data constrain the alteration and IOCG mineralization in the Fab system to a 3 m.y. window between 1870–1867 Ma, which is broadly contemporaneous with extensive high-level intrusive activity across the GBMZ. Regional- to local-scale element mobility patterns characteristic of the sodic and sodic–calcic–iron alteration type record leaching combined with weak to strong mass losses. Pure sodic alteration depleted the rocks in Ca, Co, Cu, Fe, Mg, Th, U and V. Conversely, sodic–calcic–iron alteration records significant depletions of Nb, REE, Ta, Ti, Th and U. These element mobility patterns differ from intense HT calcic–iron alteration that is enriched in Ca, Co, F, Fe, Mg, Mn, Ni and V with modest enrichments to locally significant mineralization in Th, U and REE. HT calcic–iron alteration is also characterized by substantial mass gains that translate into volume gains in stockwork zones and mass/volume gains in zones of intense host rock replacement. HT potassic–iron alteration is characterized by enrichments in Ba, K, Ni, U and V, along with locally Co and Cu. The temporal and spatial association of the Fab system alteration and the emplacement of the porphyritic dacite are indicative of the predominant involvement of magmatic–hydrothermal fluids. The high F- and Cl- contents of the porphyritic dacite and of the HT calcic–iron alteration zones as well as Nb, REE, Ta, Th, and Ti mobility provide strong evidences of high halogen activities (F and Cl) in the hydrothermal fluids. High F- and Cl-activities in the hydrothermal fluid are interpreted to have facilitated the mobilization of normally immobile (Nb, Ta, Ti, Th) or weakly mobile elements as well as some metals (e.g., V, Ni, Co). The formation of REE fluorocarbonates and calcite in the early and incipient HT calcic–iron alteration zones indicates the presence of CO2 in the hydrothermal fluids. Weaker HFSE, HREE and Ti mobility during later HT potassic–iron alteration is interpreted to reflect decreasing temperatures, pressures, F-activities and increasing fO2 as the fluids evolved and interacted with the host rocks.
Recent discoveries of basement-hosted uranium deposits in the Patterson Lake corridor in the southwestern Athabasca Basin of Canada have brought vigorous exploration interest to the region. New lithostratigraphic constraints, geochronology and airborne geophysical surveys have dramatically improved the understanding of the host basement geology, warranting a re-examination of the remote predictive mapping and geophysical responses of the buried basement rocks. This study took a two-step approach to examine the regional basement geology and architecture. First, a mosaic of the long-wavelength response of potential field (gravity and magnetic) datasets was examined to divide the basement into regional domains based on bulk physical property variations. The interpretive geological model was then refined using textural and lineament analysis of new airborne gravity and magnetic datasets, geological drill hole logs and magnetic susceptibility measurements. The new basement map identifies and updates major features including a crustal-scale structure that separates the southern Tantato Domain from the newly defined eastern Taltson Domain. This structure may have played a role in localizing fluid flow in the Patterson Lake corridor, defining the spatial extents of structurally controlled buried felsic intrusions, and redefines the boundaries of the Taltson, Clearwater and Tantato Domains. In addition, the potential field enhancements delineated significant regional faults that controlled the geometry of Paleoproterozoic cover sequences and have implications for understanding the crustal architecture of the southern Rae Province. These new interpretations shed light on the tectonic history of the region to support on-going exploration activities and delineate regionally prospective areas in this understudied area of the Canadian Shield. Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways
The P2 reverse fault in the Athabasca Basin was a conduit for basinal fluids to enter the basement rocks below the regional unconformity and modify the rocks through fluid-rock interactions. Along the P2 fault, the basement rocks consist predominately of graphitic metapelite with quartzite and pegmatite. Immediately below the unconformity is an alteration profile consisting of a lower Green Zone with chlorite and illite, middle Red Zone dominated by hematite and kaolinite, and a discontinuous Bleached Zone of kaolin-group minerals and illite right at the unconformity. Preliminary data suggest that the alteration profile cannot be attributed solely to paleo-weathering but rather must include multiple fluid events from paleo-weathering through diagenetic to late hydrothermal fluids.