In the region of the Serra do Espinhaço Meridional, peat bog is formed in hydromorphic environments developed in sunken areas on the plain surfaces with vegetation adapted to hydromorphic conditions, favoring the accumulation and preservation of organic matter. This pedoenvironment is developed on the regionally predominant quartzite rocks. Peat bog in the Environmental Protection Area - APA Pau-de-Fruta, located in the watershed of Córrego das Pedras, Diamantina,Brazil, was mapped and three representative profiles were morphologically characterized and sampled for physical, chemical and microbiological analyses. The organic matter was fractionated into fulvic acid (FA), humic acids (HA) and humin (H). Two profiles were sampled to determine the radiocarbon age and δ13C. The structural organization of the three profiles is homogeneous. The first two layers consist of fibric, the two subsequent of hemic and the four deepest of sapric peat, showing that organic matter decomposition advances with depth and that the influence of mineral materials in deeper layers is greater. Physical properties were homogeneous in the profiles, but varied in the sampled layers. Chemical properties were similar in the layers, but the Ca content, sum of bases and base saturation differed between profiles. Contents of H predominated in the more soluble organic matter fractions and were accumulated at a higher rate in the surface and deeper layers, while HA levels were higher in the intermediate and FA in the deeper layers. Microbial activity did not vary among profiles and was highest in the surface layers, decreasing with depth. From the results of radiocarbon dating and isotope analysis, it was inferred that bog formation began about 20 thousand years ago and that the vegetation of the area had not changed significantly since then.
Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of Ni on the growth and phytolith yield of grasses in two artificially contaminated soils. Two experiments separated by soil types (Typic Quartzipsamment and Rhodic Hapludox) were conducted in a completely randomized design in a 2 × 4 factorial scheme with three replications. The factors were two species of grass (Urochloa decumbens and Megathyrsus maximus) and three concentrations of Ni (20, 40, and 120 mg kg−1) and control treatment. The grasses were influenced by the increase in Ni rates in the soils. Ni exerted a micronutrient function with the addition of 30 mg kg−1 of Ni in soils, but this concentration caused toxicity in grasses. Such a level is lower than the limits imposed by the Brazilian environmental legislation. Higher Ni availability in Typic Quartzipsamment promoted Ni toxicity, with reduced growth and increased phytolith yield in the shoot, increased Ni in the shoot, and Ni occlusion in phytoliths by grasses, in comparison with Rhodic Hapludox. The yield and Ni capture in phytoliths by grasses in Ni-contaminated soils are related to the genetic and physiological differences between grasses and Ni availability in soils. Ni capture by phytoliths indicates that it may be one of the detoxification mechanisms of Urochloa decumbens to Ni contamination, providing additional tolerance. Megathyrsus maximus may be a future grass for the phytoremediation technique in Ni-contaminated soils.
<p>Post-rifting and dead orogens landscapes have presented topographic rejuvenation long after intense tectonic activity ceased, resulting in relief growth in a topography that was expected decay.In addition, there is compelling evidence of low denudation rates in tropical post-orogenic landscapes, mainly related to low-relief uplands capped with duricrusts.Thus, understanding the evolution of these landscape settings has proven enigmatic. Recent studies have invoked the contrasting rock strength as primary factor for such topographic rejuvenation. In contribution to this issue, we investigated the topographic signals in a post-orogenic and post-rifting Brazilian landscape with low contrasting rock strength, the Southern Espinha&#231;o Range(SER). In order to reveal potential relief growth, we explored interactions between drainage signatures, topographic metrics, bedrock inheritance and duricrusts. We extracted local relief, hillslope angle, and normalised channel steepness, and performed knickpoint and stream profile analysis to explore spatial variations in topography of the study area. Our findings suggest that the post-rifting evolution of the study area is dictated by episodic uplift and base level fall events coupled with favored stress concentrator zones, which accelerate channel incision and trigger ongoing dismantling of duricrusts. Knickpoints at high elevation separate a relict low-relief landscape upstream, capped by either Fe or Al duricrusts, from a transient adjustment zone downstream, indicating that records of different boundary conditions coexist in the landscape. This study shows a contradiction between low denudation rates and topographic rejuvenation even in a low contrasting rock strength domain. We have found that interactions between surface processes and pre-existing weakness zones likely occur in the SER, highlighting how enigmatic and complex long-term landscape evolution can be in ancient post-orogenic and post-rifting settings.</p>
The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.