Abstract The India‐Asia collision zone accommodates the relative motion between India and Eurasia through both shortening and pervasive strike‐slip faulting. To gain a mechanical understanding of how fault slip rates are driven across the Tibetan plateau, we develop a two‐dimensional, linear elastic, two‐stage, deformable microplate model for the upper crust based on the behavior of an idealized earthquake cycle. We use this approach to develop a suite of simple India‐Asia collision zone models, differing only in boundary conditions, to determine which combination of edge forces and displacements are consistent with both the slip rate measurements along major Tibetan faults as well as the geodetically observed extrusion of crustal material toward Southeast Asia. Model predictions for the Altyn Tagh (1–14 mm/yr), Kunlun (3–10 mm/yr), Karakorum (5–12 mm/yr), and Haiyuan (3–5 mm/yr) faults are in agreement with geologically and geodetically inferred slip rates. Further, models that accurately reproduce observed slip rate gradients along the Altyn Tagh and Kunlun faults feature two critical boundary conditions: (1) oblique compressive displacement along the Himalayan range front west of the Shillong plateau, and (2) forcing in Southeast Asia. Additionally, the ratio of internal‐block potency rate to the total potency rate for each microplate ranges from 28% to 79%, suggesting a hybrid view of deformation in Tibet as simultaneously localized on major faults and distributed at length scales <500 km.
Intermediate‐depth earthquakes are often attributed to dehydration embrittlement reactivating preexisting weak zones. The orientation of presubduction faults is particularly well known offshore of Middle America, where seismic reflection profiles show outer rise faults dipping toward the trench and extending >20 km into the lithosphere. If water is transported along these faults and incorporated into hydrous minerals, the faults may be reactivated later when the minerals dehydrate. In this case, the fault plane orientations should be the same in the outer rise and at depth, after accounting for the angle of subduction. To test this hypothesis, we analyze the directivity of 54 large ( M W ≥ 5.7) earthquakes between 35 and 220 km depth in the Middle America Trench. For 12 of these earthquakes, the directivity vector allows us to identify the fault plane of the focal mechanism. Between 35 and 85 km depth, we observe both subhorizontal and subvertical fault planes. The subvertical fault planes are consistent with the reactivation of outer rise faults, whereas the subhorizontal fault planes suggest the formation of new faults. Deeper than 85 km, we only observe subhorizontal faults, indicating that the outer rise faults are no longer being reactivated. The similarity with previous results from the colder Tonga‐Kermadec subduction zone suggests that the mechanism generating these earthquakes, and controlling fault plane orientations, depends on pressure rather than temperature or other tectonic parameters and that the observed rupture characteristics constitute a basic feature of intermediate‐depth seismicity. Exclusively subhorizontal faults may result from isobaric rupture propagation or the hindrance of seismic slip on preexisting weak subvertical planes.